Addressbook Web Service

LEKAB Communication Systems AB

Version 5.1.161, 2024-06-10

Addressbook Web Service

Introduction
Different authentication methods available for GET requests
1. The /1listaddressbooks endpoint
1.1. GET request example e.g. from web browser
1.2. POST request example, probably from an application
1.2.1. Explanation of parameters
1.2.2. HTTP response
1.2.3. Explanation of response
1.2.4. Example Python 3 code for the /1istaddressbooks endpoint
2. The /listtags endpoint
2.1. GET request example e.g. from web browser
2.2. POST request example, probably from an application
2.2.1. Explanation of parameters
2.2.2. HTTP response
2.2.3. Explanation of response
2.2.4. Example Python 3 code for the /1listtags endpoint

D U1 U1 R R R R W W NNNDNN R e

Introduction

© 2006 - 2024 LEKAB Communication Systems AB. Version 5.1.161, 2024-06-10.

This Web Service accepts HTTP GET or HTTP POST requests to update address books in the messaging
platform.

In the initial implementation, there are two endpoints: /listaddressbooks and /listtags. Not all
address books visible to a user have proper names, and may instead be identified only as a certain
user’s or organizational unit’s or company’s address book. The endpoint for listing addressbooks is
intended to allow presentation of the available addressbooks to a human user for selecting the
corresponding numeric id of the addressbook. The numeric id is then used with the other endpoints
to specify which addressbook to operate on. The endpoint for listing tags gives a comprehensive list
of all tag types and tag values in the address book, with counts for the number of occurrences.

Each of the endpoints supports the same function with GET and POST, but in the GET case, parameters
are given in the calling URL (after a ? sign, separated by & signs) , while in the POST case the
parameters are given in a json document in the HTTP POST request body. UTF-8 encoding is assumed
in all HTTP bodies.

Both the GET and the POST versions return responses in the HTTP response body as a json document.

The format of the input and output json documents and the input url parameters are described
below.

Different authentication methods available for GET
requests

The POST requests all use authentication by giving username and password in the corresponding
fields in the JSON document which is sent in the (automatically HTTPS = SSL/TLS encoded) HTTP
request body.

For GET requests we offer three different ways of supplying these credentials:

1. Username and password can be sent in the U and P url parameters

2. Username and password can be given in the HTTP headers, X-Lekab-Userid and X-Lekab-
Password, respectively. The values have to be the Base64 encoding of (a UTF-8 byte array
representation of) the username or password to allow non-US-ASCII characters. Here testuser
will be encoded as dGVzdHVzZXI= and testpass as dGVzdHBhc3M=

3. Username and password can be given as Basic authentication, i.e, the header Authorization
should have the value Basic token, where the token is the Base64 encoding of (a UTF-8 byte array
representation of) username:password. Here testuser:testpass will be encoded as
dGVzdHVzZX16dGVzdHBhc3M= and the Authorization header will have the value Basic
dGVzdHVzZXI16dGVzdHBhc3M=

Chapter 1. The /1listaddressbooks endpoint

Not all address books, to which a user has reading rights, have proper names. They may instead be
identified only as a certain user’s or organizational unit’s or company’s address book. This endpoint
is intended to allow the presentation of available address books to a human user, who can thereby
find the numeric id of the requisite address book. The numeric id is then used with the other
endpoints to specify which address book to operate on. If no numeric id is given in the other
endpoints, the default address book of the user calling the web service is assumed.

1.1. GET request example e.g. from web browser

curl
https://secure.lekab.com/addressbook/api/listaddressbooks?U=doggykennel&P=testpass

1.2. POST request example, probably from an

application
https://secure.lekab.com/addressbook/api/listaddressbooks

With the contents of the HTTP body:

{"username":"doggykennel", "password":"testpass"}

1.2.1. Explanation of parameters

POST json GET json value query param value
key query (strings (strings without
param quoted) quotes)
username U string string username of the API account in
the service
password P string string password of the API account in

the service

1.2.2. HTTP response

A successful request will return 200 OK and a json document of the following format. If the user
does not present proper login credentials or cannot read any address books, a 401 Unauthorized
will be returned, with no json document.

{ "addressbooks" : [
{ "id" : 576978287400472577,

"name" : "Kennel Company - Shared address book" },
{ "id" : 646802963557457921,

"name" : "Doggy Kennel - Private address book" },
{ "id" : 646802966493470722,
"name" : "Kennel Club Members" }]

while the alphanumeric recipient number was rejected.

1.2.3. Explanation of response

POST json key json value (strings

quoted)

addressbooks json list of json list of address book items never empty because no
documents accessible address books gives HTTP 401

id json long integer numeric id of this address book item

name string name of this address book item

1.2.4. Example Python 3 code for the /1istaddressbooks endpoint

import json
import requests

bookreq = {"username" : "doggykennel", "password": "testpass"}
bookreq_json = json.dumps(bookreq)
bookurl = "https://secure.lekab.com/addressbook/api/listaddressbooks’
response = requests.post(bookurl, data=bookreq_json)
bookresp = response.json()
for a in bookresp["addressbooks"]:

print(a["name"] + " has numeric id " + a["id"])

will output

Kennel Company - Shared address book has numeric id 576978287400472577
Doggy Kennel - Private address book has numeric id 646802963557457921
Kennel Club Members has numeric id 646802966493470722

Chapter 2. The /1isttags endpoint

A user, team or a company, can have an address book in the messaging platform, with contacts that
each has a phonenumber that can receive SMS messages. These contacts can be marked with tags
consisting of a tag type and a tag value, here often written separated by a colon character. For
instance, a contact can be marked with the tag Base:ST0 if the person is based in Stockholm. Here
Base is the tag type and STO is the tag value. The same contact can have many tags, for instance
Group:Management or On call:Yes. Which tags types and tag values are used is up to the
user/company, but they should preferably consist of letters and numbers, and can especially not
contain the characters ;, | or :. The tags are used in several parts of the service to select addressees
for messages using, so called, tag filters.

The /listtags endpoint is used to retrieve a comprehensive listing of all tags in a given address
book, with counts for the number of occurrences.

2.1. GET request example e.g. from web browser

curl
https://secure.lekab.com/addressbook/api/listtags?U=doggykennel&P=testpass&A=646802966
493470722

2.2. POST request example, probably from an
application

https://secure.lekab.com/addressbook/api/listtags

with the contents of the HTTP body:

{
"username" : "doggykennel",
"password" : "testpass",
"addressbookid" : 646802966493470722
}

2.2.1. Explanation of parameters

POST json GET json value query param value
key query (strings (strings without
param quoted) quotes)
username U string string username of the API account in

the service

POST json GET json value

key query (strings
param quoted)
password P string
addressbo A json long
okid integer
2.2.2. HTTP response

query param value
(strings without

quotes)

string password of the API account in the
service

number id of the addressbook where tags

are counted (optional, defaults to
user’s default address book)

A successful request will return 200 OK and a json document of the following format.

{ "tags" : [{ "type" :

"Breed",
"typecount" : 250,

"values" : [{ "value" : "German shepherd", "count" : 150 },
{ "value" : "Labrador retriever", "count" : 57 },
{ "value" : "Mutt", "count" : 43 }] 1},
{ "type" : "Dog show newsletter",
“typecount" : 104,
"values" : [{ "value" : "Yes", "count" : 104 } 1 } 1,
"addressbookid" : 646802966493470722,
"addressbookname" : "Kennel Club Members" }

2.2.3. Explanation of response

POST json key json value (strings
quoted)

addressbookid json long integer

addressbookn string

ame

tags json list of json
documents

type string

typecount integer

values json list of json
documents

value string

count integer

the id of the address book searched

name of the address book searched

one type item per tag type

tag type in this type item
number of tags with this tag type in the addressbook

one value item per tag value

tag value in this value item

number of tags with this tag value and tag type in the
addressbook

2.2.4. Example Python 3 code for the /1listtags endpoint

import json
import requests

tagsreq = {"username" : "doggykennel", "password" : "testpass", "addressbookid" :
646802966493470722}
tagsreq_json = json.dumps(tagsreq)
tagsurl = 'https://secure.lekab.com/addressbook/api/listtags’
response = requests.post(tagsurl, data=tagsreq_json)
tagsresp = response.json()
print("Listing tags in " + tagsresp["addressbookname"])
for a in tagsresp[“tags"]:
print(a["type"] + " occurs " + str(a["typecount"]) + " times, with " +
str(len(a["values"])) + " different values")

will output

Listing tags in Kennel Club Members
Breed occurs 250 times, with 3 different values
Dog show newsletter occurs 104 times, with 1 different values

	Addressbook Web Service
	Addressbook Web Service
	Introduction
	Different authentication methods available for GET requests

	Chapter 1. The /listaddressbooks endpoint
	1.1. GET request example e.g. from web browser
	1.2. POST request example, probably from an application
	1.2.1. Explanation of parameters
	1.2.2. HTTP response
	1.2.3. Explanation of response
	1.2.4. Example Python 3 code for the /listaddressbooks endpoint

	Chapter 2. The /listtags endpoint
	2.1. GET request example e.g. from web browser
	2.2. POST request example, probably from an application
	2.2.1. Explanation of parameters
	2.2.2. HTTP response
	2.2.3. Explanation of response
	2.2.4. Example Python 3 code for the /listtags endpoint

