
Medallia Adapter
LEKAB Communication Systems AB

Version 5.1.161, 2024-06-10

Medallia Adapter
Introduction. 1

Authentication method available for requests . 1

1. The /send/{channel} endpoint . 2

1.1. POST /send/sms request example . 2

1.2. POST /send/sms request example for one-way messaging . 2

1.2.1. Explanation of parameters to /send/sms . 3

1.3. POST /send/rcs request example (future Rich extension) . 3

1.3.1. Explanation of parameters to /send/rcs, /send/kakaotalk etc . 4

1.4. Responses to /send/sms . 5

1.4.1. HTTP successful response to /send/sms . 5

1.4.2. HTTP failed response to /send/sms . 5

1.4.3. Explanation of response to /send/sms . 5

1.5. Setup of /send/{channel} and callback on Medallia . 5

1.6. Setup of /send/sms and callback in the messaging gateway. 6

1.6.1. All columns in the t_medallia_settings database table. 7

2. Callback to Medallia of delivery status and incoming replies. 8

2.1. Examples of callback of message delivery status . 8

2.1.1. Callback of successful message delivery status . 8

2.1.2. Callback of unsuccessful message delivery status . 9

2.1.3. Explanation of fields in the delivery callback json object. 10

2.2. Example of callback of incoming response message . 10

2.2.1. Explanation of fields in the incoming response message callback json object 11

2.3. Signature of the callback messages . 12

3. Medallia Adapter Implementation details . 13

3.1. Medallia Adapter Documentation used. 13

3.2. Implementation limitations and conventions . 13

3.3. Supported character sets in the resulting SMS and pricing issues . 13

3.4. Potential problems with callback of Rich channel READ receipts . 14

Introduction
© 2006 - 2024 LEKAB Communication Systems AB. Version 5.1.161, 2024-06-10.

The Medallia software is used for sending out a series of questions to a recipient and interpreting
the incoming replies. Example applications include a customer satisfaction questionnaire and an
interactive assembly of a customer profile. The system has a number of built-in channels, but can
also make use of third-party channel adapters.

This document describes the Medallia Adapter, which functions as such a third party channel
adapter. The available channels are at present SMS, transported via our message gateway, and in
the future, for customers who have arranged the necessary contractual agreements with us and the
channel providers, Rich Communication channels transported via our Rich Communication API.
First planned there are text_message and choice_message messages according to the Universal
Profile 2.0 RCS standard, in the RCS, KakaoTalk and Line channels.

The channel adapter has two functional parts, a sending API taking HTTP POST json requests with
authentication using an access_token parameter on the URL (which corresponds to an API Key for
the user account in question), and a callback service transferring delivery status receipts and
incoming reply messages to a url pointing to the Medallia system instance, signing the callback
messages with a signature secret also supplied by the Medallia system instance.

The /send endpoint takes a json document in the HTTP POST request body, and returns a response in
the HTTP response body as a json document. The callback service makes HTTP POST requests with a
json document in a format specified by Medallia to a given url, and expects a 200 OK empty
response. The formats of these input and output json documents and the input url query parameter
are described below. Formats of the callback messages into the Medallia system are also described
below.

Authentication method available for requests
Every request to the sending service must include authentication, i.e. the equivalent of username
and password. To conform to the standard of the Medallia software, the only allowed
authentication method for the Medallia adapter sending endpoint is the following:

1. An API key generated in the Web Portal is used as a query parameter access_token, The length of
the key varies depending on the length of the username (which is contained within the key).
TUxVOmRHVnpkSFZ6WlhJOjlKUUczTXU2TVZVU1Exd3Y is a possible example key for the username
testuser. The key is independent of the account password.

Callback to Medallia is authenticated, and content integrity verified, by adding a header containing
the HMAC SHA-1 signature of the HTTP POST body using a secret supplied by Medallia, as described
below.

1

Chapter 1. The /send/{channel} endpoint
This endpoint is one of the two parts of the Medallia adapter. It is used by the Medallia software for
sending a message to one recipient.

1.1. POST /send/sms request example
Probably from the Medallia application. The ordinary application is two-way SMS, i.e. a number
from the customer’s number pool will be the sender id shown on the recipient phone, and replies
will be to that number.

https://secure.lekab.com/medallia/send/sms?access_token=TUxVOmRHVnpkSFZ6WlhJOjlKUUczTX
U2TVZVU1Exd3Y

With the contents of the HTTP body following the conventions of the Medallia software:

{
 "recipient" : {
 "id": "+491721234567"
 },
 "message": {
 "text": "Haben Sie Ihren heutigen Einkauf genossen?"
 },
 "notification_type": "REGULAR"
}

1.2. POST /send/sms request example for one-way
messaging
Probably from the Medallia application. The ordinary application is two-way SMS, i.e. a number
from the customer’s number pool will be the sender id shown on the recipient phone, and replies
will be to that number.

If one-way SMS is required, the Medallia system must supply a sender id to be used. In many
countries, that id can be alphanumeric, but in some jurisdictions, that alphanumeric sender id must
be registered, while other demand a (usually pre-registered) phone number as the sender id.
Different countries have different rules about what is a campaign (which must be pre-approved)
and what is one-to-one communication (which is often less restricted).

In the following example, the sender id "Shop Ltd" is requested. The SMS standard allows a
maximum of 11 characters (spaces included) in a sender id, and results vary when characters
outside western European alphabets are used. Note url encoding of the space character ("%20").

https://secure.lekab.com/medallia/send/sms?from=Shop%20Ltd&access_token=TUxVOmRHVnpkSF

2

Z6WlhJOjlKUUczTXU2TVZVU1Exd3Y

With the contents of the HTTP body following the conventions of the Medallia software:

{
 "recipient" : {
 "id": "+491721234567"
 },
 "message": {
 "text": "Herzlich willkommen zurück!"
 },
 "notification_type": "REGULAR"
}

1.2.1. Explanation of parameters to /send/sms

Note that json key names are case sensitive, so that "Recipient" is not a valid substitute for
"recipient".

key value

access_token URL query parameter API Key for the sending user account in the messaging
gateway

from URL query parameter SMS sender id (if present and non-empty, one-way SMS
is used)

recipient object json object containing the recipient id

id string recipient phone number, E.164 globalized (RFC2806),
"plus and country code"

message object specification of the message to send

text string the text of the sms

notification_type string (optional) any value will be ignored

1.3. POST /send/rcs request example (future Rich
extension)
probably from the Medallia application

https://secure.lekab.com/medallia/send/rcs?access_token=TUxVOmRHVnpkSFZ6WlhJOjlKUUczTX
U2TVZVU1Exd3Y

With the contents of the HTTP body following the conventions of the Medallia software:

{

3

 "recipient" : {
 "id": "+491721234567"
 },
 "message": {
 "text": "Haben Sie Ihren heutigen Einkauf genossen?",
 "quick_replies": [
 {
 "content_type": "text",
 "title": "Jawohl!",
 "payload": "YES"
 },
 {
 "content_type": "text",
 "title": "Gar nicht!",
 "payload": "NO"
 }
]
 },
 "notification_type": "REGULAR"
}

1.3.1. Explanation of parameters to /send/rcs, /send/kakaotalk etc

Note that json key names are case sensitive, so that "Recipient" is not a valid substitute for
"recipient".

key value

access_token URL query parameter API Key for the user account sending the message

recipient object json object containing the recipient id

id string recipient phone number, E.164 globalized (RFC2806),
"plus and country code", for LINE channel instead the
LINE ID

message object specification of the message to send

text string the text of the text_message or choice_message

quick_replies array of objects
(optional)

rich message choice buttons in choice_message if
present (ignored for sms)

content_type string (optional) must be "text", empty string or not present

title string text on the choice button (cannot be empty)

payload string (optional) text to send back to Medallia when button is pressed,
defaults to title

notification_type string (optional) any value will be ignored

4

1.4. Responses to /send/sms

1.4.1. HTTP successful response to /send/sms

A successful request will return 200 OK and a json document of the following format.

Note that the request for sending may be successful even if the SMS sending later fails due to
external factors (phone turned off, phone subscription expired, no such subscriber). The
subsequent overall fate of the SMS is not returned as an error, but later via the delivery status
callback functionality (see below).

The Content-Type header of the response is application/json for all responses.

{"recipient_id":"+491721234567","message_id":"1695262"}

1.4.2. HTTP failed response to /send/sms

A failed request will return a failing error code (400, 401, 403, 404 or 500) and a json document of
the following format.

If the request succeeds, but SMS sending later fails due to external factors (phone turned off, phone
subscription expired, no such subscriber), the subsequent overall fate of the SMS is not returned as
an error, but later via the delivery status callback functionality (see below).

The Content-Type header of the response is application/json for all responses.

{"error":"Unauthorized"}

1.4.3. Explanation of response to /send/sms

json key json value

recipient_id string recipient phone number, E.164 globalized (RFC2806),
"plus and country code", for LINE channel instead the
LINE ID

message_id string A unique message id (may be up to 50 characters),
referenced in all callback messages

error string Error message from the adapter

The response will either contain the fields recipient_id and message_id (successful) or error
(unsuccessful). The Content-Type header of the response is application/json for all responses.

1.5. Setup of /send/{channel} and callback on Medallia
In the "channel definition", the parameter Customer send message URL should be set to the adapter
url, e.g.

5

https://secure.lekab.com/medallia/send/sms

Likewise, in the "channel definition", the parameter Token should be set to the api key of the
sending user account in the message gateway e.g.

TUxVOmRHVnpkSFZ6WlhJOjlKUUczTXU2TVZVU1Exd3Y

For the callback functionality (see below), three strings must delivered (once, when setting up the
channel) from the Medallia system administrator to our customer service, for inclusion in the
database table as described in the following paragraphs.

The three necessary strings are the Instance URL of the Medallia system of the customer, e.g.

https://conversations.fra1.medallia.eu/cg/mc/custom/abcdef01-2345-6789-0abc-
defabcdef012

and the Page Id inside Medallia of the customer application using Medallia, e.g.

Pg123456AcmeCustom

and, finally, the Signing secret used for SHA-1 HMAC signature of the callback HTTP body, for
authentication of callback messages to be accepted at this Instance URL, e.g.

AbcdEFGH+IJJ4~%GmJ$abcdefgh*qv12345

1.6. Setup of /send/sms and callback in the messaging
gateway
Setup for SMS sending inside our system begins with standard two-way API user setup with receipt
and incoming callback set to MEDALLIA with the user id as "callback url". The sending user account
must have the roles Api and Two-way and the user’s default number pool should contain a single
dedicated number, so that conversations are kept together in the recipient phone. Number pool
switching, e.g. for different country prefixes, is recommended when the customer needs different
senders for different countries, and this is set up in the database table t_number_pool with each of
the alternate number pools also containing a single number.

Further send channel parameters and setup of Medallia callback (see below) is done in the
database table t_medallia_settings (see next paragraph) where a database row, with the composite
key consisting of the (integer) user id and the (string) channel "SMS", contains all further settings of
the Medallia adapter for the customer. The three strings needed from Medallia for each customer
channel (above) go in this database row.

Note that the SMS sending (as opposed to the callback) functionality of the adapter will work also

6

when no row with the proper user id and "SMS" channel is present. Not so for the future extension
to Rich channels, which will have to be defined each in a row in this table, and also in the Rich
authorization tables. Such setup will also need further contractual agreements with us and with the
respective channel administrative bodies.

1.6.1. All columns in the t_medallia_settings database table

column type

c_userid long integer id of the user account, part of table primary key

c_channel string (capital
letters only)

SMS (or later KAKAOTALK etc), part of table primary key

c_version long integer for internal use, set to 0 when creating a new row

c_url string from
Medallia

the full instance url for the Medallia instance where the
customer is defined

c_pageid string from
Medallia

an internal id for the customer and channel used inside
Medallia

c_secret string from
Medallia

SHA-1 HMAC secret used for signing callbacks

c_readnotif Y or N (default N) a second "delivered" receipt is sent on READ status from a
Rich channel (ignored for SMS)

c_checknumber Y or N (default N) SMS only, do not try to send if non-mobile number according
to Google library

c_smsreplchars Y or N (default N) SMS only, edit message to replace with cheaper characters
(needs role, contact sales)

c_smsvalidmin integer (default
1440)

SMS only, stop retrying from operator to phone after time (if
operator honors)

c_richappname string (default "") Rich channels only, used for customers with different apps
in Rich Content Channels API

7

Chapter 2. Callback to Medallia of delivery
status and incoming replies
This is the second part of the adapter, responsible for the callback of message delivery status and
incoming reply messages to the Medallia system.

When a message has been sent via the /send/sms (etc.) endpoint, delivery status events related to
the message generate HTTP POST callbacks of json documents to the instance url that was set for the
user account and channel in the t_medallia_settings database table. If no pre-set url is defined, no
message delivery status reports will be sent back to the Medallia system, but the message will
anyway be delivered to the recipient (or not, if there is a problem).

When the recipient responds, the same url will receive a json document in a HTTP POST callback
containing the response and referring to the id of the original question.

The listening service at the instance url is expected to respond with a 200 OK result code (or the
equivalent 201 Created, 202 Accepted or 204 No Content). If no server is found, the server does not
answer with a result code, or a non-accepted result code is received, the callback will be retried a
number of times, and then abandoned.

2.1. Examples of callback of message delivery status

2.1.1. Callback of successful message delivery status

This is a callback message informing of a delivered status for the previously sent message:

{
 "object" : "page",
 "entry" : [{
 "id" : "Pg123456AcmeCustom",
 "time" : 1672912663747,
 "messaging" : [{
 "sender" : {
 "id" : "+491721234567"
 },
 "recipient" : {
 "id" : "Pg123456AcmeCustom"
 },
 "timestamp" : 1672912663747,
 "delivery" : {
 "mids" : ["1695530"],
 "status" : "delivered"
 }
 }]
 }]
}

8

The message will have HTTP headers which include

Content-type: application/json

and the HMAC SHA-1 signature of the entire UTF-8 encoded HTTP body using the supplied secret
(example is not accurate)

X-Hub-Signature: sha1=c2bfc5766f1625f48562bc91beeb2ca5a6386ff3

Note that the LINE channel does not send successful delivery status receipts, but only unsuccessful
in such cases.

2.1.2. Callback of unsuccessful message delivery status

This is a message informing of a undelivered status for the previously sent message:

{
 "object" : "page",
 "entry" : [{
 "id" : "Pg123456AcmeCustom",
 "time" : 1672912663747,
 "messaging" : [{
 "sender" : {
 "id" : "+491721234567"
 },
 "recipient" : {
 "id" : "Pg123456AcmeCustom"
 },
 "timestamp" : 1672912663747,
 "delivery" : {
 "mids" : ["1695530"],
 "status" : "undelivered",
 "error" : {
 "code" : 4,
 "name" : "Expired",
 "message" : "Recipient unavailable for 24 hours"
 }
 }
 }]
 }]
}

The message will have HTTP headers which include

Content-type: application/json

9

and the HMAC SHA-1 signature of the entire UTF-8 encoded HTTP body using the supplied secret
(example is not accurate)

X-Hub-Signature: sha1=c2bfc5766f1625f48562bc91beeb2ca5a6386ff3

Note that the LINE channel does not send successful delivery status receipts, but only unsuccessful
in such cases.

2.1.3. Explanation of fields in the delivery callback json object

json key json value

object string always "page"

entry array of objects always one single object

id (outer) string Medallia page id

time long integer Unix timestamp millis after epoch for delivery event

messaging array of objects always one single object

sender object actually refers to the message recipient

id (in sender) string recipient phone number, E.164 globalized (RFC2806), "plus
and country code", for LINE channel instead the LINE ID

recipient object actually refers to the page id of the Medallia sender

id (in recipient) string Medallia page id

timestamp long integer Unix timestamp millis after epoch for delivery event

delivery object presence of this field identifies this as delivery receipt

mids array of strings always one single string, internal message id (may be up to 50
characters)

status string failed, sent, delivered, or undelivered

error object only present for failed and undelivered status

code integer our error code of delivery failure

name string our error name of delivery failure

message string error message from operator, if any

2.2. Example of callback of incoming response
message
This is a callback message informing of an incoming answer to a previously sent message:

{
 "object" : "page",
 "entry" : [{

10

 "id" : "Pg123456AcmeCustom",
 "time" : 1672912936212,
 "messaging" : [{
 "sender" : {
 "id" : "+491721234567"
 },
 "recipient" : {
 "id" : "Pg123456AcmeCustom"
 },
 "timestamp" : 1672912936212,
 "message" : {
 "mid" : "1695530",
 "text" : "Ja"
 }
 }]
 }]
}

The message will have HTTP headers which include

Content-type: application/json

and the HMAC SHA-1 signature of the entire UTF-8 encoded HTTP body using the supplied secret
(example is not accurate)

X-Hub-Signature: sha1=c2bfc5766f1625f48562bc91beeb2ca5a6386ff3

2.2.1. Explanation of fields in the incoming response message callback json
object

json key json value

object string always "page"

entry array of objects always one single object

id (outer) string Medallia page id

time long integer Unix timestamp millis after epoch for incoming event

messaging array of objects always one single object

sender object refers to the sender of the incoming message

id (in sender) string sender phone number, E.164 globalized (RFC2806), "plus and
country code", for LINE channel instead the LINE ID

recipient object refers to the page id of the Medallia application

id (in recipient) string Medallia page id

timestamp long integer Unix timestamp millis after epoch for incoming event

11

json key json value

message object presence of this field identifies this as incoming response

mid string Internal message id of the outgoing message to which this is a
response (may be up to 50 characters)

text string text of the incoming message, for SMS what was actually
keyed into the mobile phone, for Rich buttons the payload, if
present, or else title

2.3. Signature of the callback messages
To validate the author and integrity of the callback information, every callback HTTP POST request
has a signature in a HTTP header X-Hub-Signature containing the HMAC SHA-1 signature of the entire
UTF-8 encoded message HTTP POST body, using the secret received from Medallia for the instance
url, as entered into the t_medallia_settings database table.

The following Java code is used to generate the signature.

private static String signature(final String data, final String secret) {
 String signaturehex = "";
 try {
 SecretKeySpec signingKey = new SecretKeySpec(secret.getBytes(StandardCharsets
.UTF_8), HMAC_SHA1_ALGORITHM);
 Mac mac = Mac.getInstance(HMAC_SHA1_ALGORITHM);
 mac.init(signingKey);
 byte[] signatureBytes = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));
 signaturehex = Hex.encodeHexString(signatureBytes);
 } catch (Exception e) {
 return "";
 }
 return "sha1=" + signaturehex;
}

12

Chapter 3. Medallia Adapter
Implementation details

3.1. Medallia Adapter Documentation used
The Adapter was implemented according to specifications in the document

Medallia Conversations Custom Channel Integration 2022-10-10.pdf

3.2. Implementation limitations and conventions
The fields notification_type and sender_action in the /send/{channel} json request body, as well as
any other fields not listed above, are allowed but completely ignored. All json keys must have the
capitalization described, i.e., "Recipient" is not a valid alternative to "recipient".

Medallia requests for profileData are not supported by the adapter implementation, and the
corresponding HTTP GET endpoint will not be found, so layers outside the adapter implementation
are likely to respond with a 404 Not found.

Medallia End-of-conversation signal and Typing signal requests are recognized but not supported by
the implementation, and will result in a 400 "Message empty or null" error message, because such
requests have a structure similar to a send request missing a message text. To avoid these errors,
set "disableEndSignal" in the Medallia account settings, and "Typing off" in the Medallia Custom
channel properties.

UTF-8 encoding is assumed everywhere (the standard for json), and where URL-encoding of input
data is necessary (e.g. for URL query parameters), the underlying encoding is UTF-8 (the standard
for url encoding).

As mentioned above, Rich messaging channels RCS, KakaoTalk and Line are not yet available, but in
an advanced stage of preparation.

Note that the Line channel uses a special Line app id instead of a phone number, and the id should
not generally be preceded by a + sign or country code. Also, the Line channel does not send
successful delivery receipts, but only unsuccessful in such cases.

3.3. Supported character sets in the resulting SMS and
pricing issues
The character set used in the input to the API does not affect the resulting SMS. Instead, the
characters that are requested to be sent will determine the size and pricing of the message.

Most network operators globally support all printable characters in SMS messages. They also
support the sending of longer SMS messages by dividing the content into several SMS message parts
(with some exceptions, like South Korea). An SMS message part is limited in size to 140 bytes; longer

13

messages will require more parts. The character set used, not the language, will determine how
many parts are needed. The pricing is based on the number of SMS message parts sent. Normally,
the recipient’s mobile handset will automatically reassemble the parts of a divided message in the
correct order, without any action needed by the recipient.

The GSM standard regulates SMS communication globally. While all characters are supported, some
characters used in Western European languages are given special treatment. Two character
encodings (character sets) are supported by almost all network operators in the world, and
therefore by us: GSM-7 and UCS-2.

By GSM-7 we mean the internationally common GSM-7 alphabet according to GSM 03.38 / 3GPP
23.038 without any national language shift table (only the basic character extension). See for
example https://en.wikipedia.org/wiki/GSM_03.38 for details.

The GSM-7 encoding uses 7 bits per character to encode only characters from these Western
European languages (including numbers and some punctuation), while the UCS-2 encoding can
encode characters from any Unicode alphabet and uses 16 bits per character. If every character in a
message can be encoded with GSM-7, the message will employ the more compact GSM-7 encoding.
If any character in a message cannot be encoded with GSM-7, UCS-2 will be used for the entire
message.

Since the GSM-7 is a 7-bit character set, 160 characters will fit into one 140 bytes SMS part. The UCS-
2 is a 16-bit character set and can accommodate only 70 characters in a 140 bytes SMS part. If a
GSM-7 encoded message is longer than 160 characters, or a non-GSM-7 encoded message is longer
than 70 characters, it will be divided into more than one part. Due to how such parts are
constructed, multi-part SMS messages can only fit 153 GSM-7 characters or 67 UCS-2 characters per
part. All parts of a message will use the same encoding, so they will all be GSM-7 or all UCS-2.

The inclusion, even accidentally, of a non-GSM-7 encodable character in a message will therefore
transform it into a UCS-2 encoded message. This message will have a larger number of shorter
parts, and the send-out will be more costly. Therefore, when sending SMS messages in Western
European languages, it is often advisable to be on the lookout for any such characters that may be
included in the message. For instance, some characters automatically generated in some
circumstances by Microsoft Word, like curved citation marks (curved quotes) and unbreakable
spaces, are not included in the GSM-7 character set. French vowels with the accent circonflexe also
do not fit into GSM-7. Unsurprisingly, Cyrillic, Arabic, Chinese, Thai, Japanese and many other
alphabets are not included, and neither are emojis, while ordinary text in English, Swedish,
Finnish, German and similar languages will fit into the GSM-7 encoding. The Euro-sign (European
Union currency symbol) is included in the GSM-7 basic character extension, which we support.

3.4. Potential problems with callback of Rich channel
READ receipts
In contrast to SMS, where it is unknown whether the recipient has opened and read the message,
many Rich communication channels send one receipt upon message delivery, and a second receipt
when the message has been read by the user. The specification for Medallia receipts says that a
successful delivery has only one kind of format, without any way of marking whether it pertains to
READ or DELIVERED.

14

https://en.wikipedia.org/wiki/GSM_03.38

Therefore, we offer two options via the flag c_readnotif in the database table t_medallia_settings,
each with their own disadvantages.

The first, and default, with flag value N, is to not confuse Medallia with two delivered receipts for
the same message. The disadvantage of this is that our system will only deliver callbacks of
messages statuses that are of a higher level of finality than earlier callbacked statuses. A READ
callback has higher finality than a DELIVERED callback. That means that if, for some reason, the
operator sends the READ receipt before the DELIVERED receipt (which can indeed happen), we
mark the message as READ, but do not send any callback due to the flag being set to N, and when we
get the DELIVERED receipt we do not send any callback, because of the status already being the
more final READ. So in those instances, no receipt callback arrives.

The second, with flag value Y, gives at least one, but most of the time two delivered receipts for the
same message. The Medallia service provider will have to ensure that this does not cause confusion
in the Medallia system.

15

	Medallia Adapter
	Medallia Adapter
	Introduction
	Authentication method available for requests

	Chapter 1. The /send/{channel} endpoint
	1.1. POST /send/sms request example
	1.2. POST /send/sms request example for one-way messaging
	1.2.1. Explanation of parameters to /send/sms

	1.3. POST /send/rcs request example (future Rich extension)
	1.3.1. Explanation of parameters to /send/rcs, /send/kakaotalk etc

	1.4. Responses to /send/sms
	1.4.1. HTTP successful response to /send/sms
	1.4.2. HTTP failed response to /send/sms
	1.4.3. Explanation of response to /send/sms

	1.5. Setup of /send/{channel} and callback on Medallia
	1.6. Setup of /send/sms and callback in the messaging gateway
	1.6.1. All columns in the t_medallia_settings database table

	Chapter 2. Callback to Medallia of delivery status and incoming replies
	2.1. Examples of callback of message delivery status
	2.1.1. Callback of successful message delivery status
	2.1.2. Callback of unsuccessful message delivery status
	2.1.3. Explanation of fields in the delivery callback json object

	2.2. Example of callback of incoming response message
	2.2.1. Explanation of fields in the incoming response message callback json object

	2.3. Signature of the callback messages

	Chapter 3. Medallia Adapter Implementation details
	3.1. Medallia Adapter Documentation used
	3.2. Implementation limitations and conventions
	3.3. Supported character sets in the resulting SMS and pricing issues
	3.4. Potential problems with callback of Rich channel READ receipts

