
Lekab Rich Messaging Multichannel
API

Lekab Communication Systems AB

Version 6.0.105.1, 2025-09-16

Lekab Rime Rest Web Service
Introduction. 1

Authentication methods available for requests . 2

How to obtain an oauth token from our oauth server . 3

POST request examples . 3

Explanation of parameters . 3

1. The /send endpoint. 4

1.1. POST request example: a text type message without suggestions . 4

1.2. POST request example: single card type message, suggestions in the card and after 5

1.3. Explanation of parameters for /send . 6

1.4. HTTP response to /send . 7

1.5. Explanation of response to /send . 7

1.6. Example Python 3 code . 8

2. Details of how to construct the richMessage json object . 10

2.1. Structure of the four message types. 10

2.1.1. Text messages . 10

2.1.2. Media messages. 11

2.1.3. Single card messages . 12

2.1.4. Carousel messages . 13

2.1.5. Available suggestions for the suggestion list parameters . 16

3. Opting in and out and blocking of numbers . 21

4. Callback of receipts and incoming . 22

4.1. The /seturl endpoint for setting callback webhooks . 22

4.1.1. POST request example: setting both endpoints . 22

4.1.2. Explanation of parameters for /seturl . 23

4.1.3. HTTP response to /seturl . 23

4.2. Format of callback to user webhook of status and incoming . 23

4.2.1. Callback of status . 23

4.2.2. Callback of incoming . 25

4.2.3. Explanation of the different incoming message types. 27

Introduction
© 2021-2025 Lekab Communication Systems AB. Version 6.0.105.1, 2025-09-16.

This is a Web Service API with the primary purpose of sending Rich Communication Service (RCS)
messages over the Google RCS for Business (formerly RBM Rich Business Messaging) network.
Currently, the API contains the basic sending functionality, as well as callback notification of status
of messages and callback delivery of incoming messages to a user-defined webhook url.

There are two main advantages of RCS messages over SMS messages. First, the messages are "rich"
in the sense that they can also contain media (image, video, sound) and certain combinations of
media and text known as cards and carousels of cards. They can also contain suggestion buttons
which can be clicked to generate replies or start actions, like opening a url, calling a number or
opening the map at a position. Secondly, the messages are always sent from a registered agent,
which has been vetted by Google and the user’s operator for use purpose and cannot be easily
"spoofed", so that the end-user knows that the message is from a trusted, known source.

Rich Communication Service messages according to the Universal Profile 2.x RCS standard are
currently supported, and Universal Profile 3.0 standard features will be implemented as they are
rolled out by Google RCS for Business.

Similar to SMS, an RCS message is received in the standard Messages app and does not need the
recipient to download a dedicated app (toggling a setting may be needed). Message reception is
today limited to Android phones, but iOS phones are expected to get RCS capability soon. With RCS
currently only supported on Android/Google handsets, our service has fallback functionality to
the SMS channel, where sending goes through our own SMS gateway and not through Google. We
have plans to expand to other channels in the future.

User accounts and billing are integrated with our SMS gateway, and we handle communication
with Google and facilitate registration of sending agents with the telephone operators.

Each message can only be of one content type. The service supports the message content types
offered by Google at the time of writing: a text of up to 3000 bytes, one piece of media, a single
card or a carousel of 2 to 10 cards. Each message can also have a number (currently up to 11) of
suggestions.

If a message is sent with instructions to first try the RCS channel, and RCS is not available for that
agent to that phone, fallback happens, i.e. the next channel on the list of channels is tried
(currently, this will be SMS if present). The user may supply a dedicated SMS message text which
will be sent instead of the RCS message upon fallback. If an SMS text is not present, the text-type
message content will be used, and if that is also not present due to the RCS message not being of the
text type, sending will fail. Note that SMS sending requires specification of a sender id
(alphanumeric or phone number) or borrowing a sender id from one of our number pools (Two-
way SMS).

We also offer automatic "up-lift" of SMS messages where a user’s messages sent from any of our
standard SMS APIs with a specific sender id are sent as RCS text messages from the user’s agent,
with fallback to the original SMS if RCS did not work, today probably due to an i(ncompatible)
Phone. Up-lift setup and terms of sale are outside the scope of this manual.

1

Google RCS for Business defines "Basic RCS" as a text-type message without any suggestion buttons,
and with a text that fits into 160 bytes of UTF-8 encoding. In that universal standard encoding of
the Internet, English letters take 1 byte, European umlauts take 2 bytes, Chinese characters 3 bytes
and emojis (as well as Ancient Egyptian hieroglyphs) 4 bytes. The main feature of a Basic RCS is that
it is delivered at a lower cost than other RCS for Business messages, and is perfect for the kind of
applications where an SMS would be used in the old days of yore. The advantage here with RCS is
the spoof-proof sender agent, which lends greater trust to security related messages, for instance,
a one-time password login sequence where the message content is a short text string.

The implementation so far includes the endpoint /send, with the obvious purpose, as well as the
endpoint /seturl which is used to set the urls to which receipts and incoming messages should be
forwarded.

The endpoints support only POST calls where the HTTP POST request body is a JSON document and
returns responses in the HTTP response body as JSON documents. The standard character
encoding of JSON is UTF-8, and the API does not recognize any other encodings (ISO-8859-1,
Windows-1252 or other).

The formats of the input and output json documents are described below.

Authentication methods available for requests
Every request to the service must include authentication, i.e. username and password (or
equivalent). For POST requests these can be given in the (automatically HTTPS = SSL/TLS encrypted)
HTTP headers.

We offer four different alternative ways of supplying these login credentials:

1. Username and password can be given as standard Basic authentication, in which the header
Authorization should have the value Basic + token, where the token is the Base64 encoding of (a
UTF-8 byte array representation of) username:password. Here testuser:testpass will be encoded
as dGVzdHVzZXI6dGVzdHBhc3M=, and the header Authorization should have the value Basic
dGVzdHVzZXI6dGVzdHBhc3M= with a single space between the word Basic and the Base64 token.

2. Username and password can be given in the HTTP headers, X-Lekab-Userid and X-Lekab-
Password, respectively. The values have to be the Base64 encoding of (a UTF-8 byte array
representation of) the username or password to allow non-US-ASCII characters. Here testuser
will be encoded as dGVzdHVzZXI= and testpass as dGVzdHBhc3M=

3. An API key obtained from Lekab or by self-service in the web portal can be used as a query
parameter key or as the value of the header X-API-Key. The length of the key varies depending
on the length of the username (which is contained within the key).
TUxVOmRHVnpkSFZ6WlhJOjlKUUczTXU2TVZVU1Exd3Y is a possible example key for the username
testuser. The key is independent of the account password.

4. A Bearer token obtained from our Oauth2 server can be used, where the header Authorization
should have the value Bearer token, with a single space between the word Bearer and the token.
See below for instructions how to call our oauth server.

It is possible to disallow the username+password based authentication methods by setting the role
DISALLOW_BASIC for the API user, forcing the use of either API-key or Oauth authentication.

2

If any of the alternative methods of authentication are used, parameter values pertaining to other
authentication methods should be omitted or set to the empty string "".

How to obtain an oauth token from our oauth server
The /auth/api/v1/token endpoint is used to request an OAuth 2.0 Bearer Token.

POST request examples

Using Basic authentication (username and password in a Base64 from UTF-8 encoded header)

curl -X POST --location "https://secure.lekab.com/auth/api/v1/token" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'grant_type=client_credentials' \
 --basic --user username:password

Using username and password in body (client_id and client_secret url-encoded from UTF-8)

curl -X POST --location "https://secure.lekab.com/auth/api/v1/token" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'grant_type=client_credentials&client_id=username&client_secret=password'

Note that both these uses of username:password authentication are available for the call even if the
user has the role DISALLOW_BASIC set. We do not support refresh tokens for the oauth server.

Explanation of parameters

POST param query param value Description

grant_type client_credentials (string) The requested grant type. Only
client_credentials is supported.

client_id user name (string) User name if Basic authentication is
not used. Url encoded from utf-8 if
necessary

client_secret user password (string) Password if Basic authentication is not
used. Url encoded from utf-8 if
necessary

3

Chapter 1. The /send endpoint
Used for sending rich messages over the available channels (currently RCS and SMS).

All sending is from the sending user account’s RCS for Business agent, registered and approved by
Google and the telephone operators in the destination country. We will assist in the registration and
approval process. We can also assign a test agent (where a small number of phone numbers are
pre-registered as allowed destinations) for testing. Terms of sale, contracts, approval, credit check
etc. are not covered by this manual. We will associate the user account with the RCS agent, so
the API sender needs only know the login credentials of the sending user, while we handle all
communication with Google.

Channels are specified as a comma (",") separated list starting with the channel to try first.
Channels cannot be repeated. Therefore, the currently possible channel specifications are "RBM",
"SMS", "RBM,SMS" and "SMS,RBM". It is likely, that "RBM,SMS" (RBM with fallback to SMS) and
"RBM" (RBM without fallback) will be of primary interest to API users.

A message can be addressed to a number of recipients, and the channels will be tried as specified
for each recipient until a successful sending is achieved. Recipient addresses (addresses are phone
numbers for both RBM and SMS) are given separated by semi-colons (";"). In the event that a
given recipient has different numbers for different channels, and to later accommodate channels
that do not use phone numbers, the address to use in each channel can be given separated by
commas. If the number of addresses given for a recipient are fewer than the number of channels
specified, the last address is repeated (This is the most common case, where the RBM number given
is also used for SMS). Phone numbers must include a country code. We allow up to 400 recipients
per HTTP POST call to /send, but recommend substantially fewer. Functionality for accommodating
large batch sending is under consideration.

While most parameters for the /send endpoint need only a short description, the actual rich
message is a JSON structure with strict rules, and therefore the richMessage field (in the top level of
the JSON document which makes up the body of the HTTP POST call) will be explained in its own
section below.

1.1. POST request example: a text type message
without suggestions

https://secure.lekab.com/rime/send

Sending to one recipient with authentication in the headers and the following as contents of the
HTTP body. A typical Basic RBM.

{
 "channels" : "RBM",
 "address" : "46701234567",
 "richMessage" : {
 "text":"Your access key is 12345678"

4

 }
}

1.2. POST request example: single card type message,
suggestions in the card and after

https://secure.lekab.com/rime/send

Sending to two recipients with authentication in the headers and the following as contents of the
HTTP body.

{
 "channels" : "RBM,SMS",
 "address" : "46701234567;46702345678",
 "smsText" : "This SMS would have been a RCS card message if your phone allowed it",
 "smsSender" : "MYCOMPANY",
 "richMessage" : {
 "richCard" : {
 "standaloneCard" : {
 "cardOrientation" : "HORIZONTAL",
 "thumbnailImageAlignment" : "LEFT",
 "cardContent" : {
 "title": "A question of zoology",
 "description": "Is this a cat?",
 "media": {
 "height" : "MEDIUM",
 "contentInfo": {
 "fileUrl" :
"https://upload.wikimedia.org/wikipedia/commons/2/2b/Mainecoon1.png"
 }
 },
 "suggestions": [
 { "reply" : { "text" : "It is a cat!", "postbackData" : "CAT YES"}
},
 { "reply" : { "text" : "No, it is not!", "postbackData" : "CAT NO"}
}
]
 }
 }
 },
 "suggestions":[
 { "action" : {
 "text" : "Show famous place on map",
 "postbackData" : "TOUR EIFFEL",
 "viewLocationAction" : { "latLong" : {"latitude" : 48.858093, "longitude"
: 2.294694}, "label" : "Voila"} }
 }

5

]
 }
}

1.3. Explanation of parameters for /send

POST json key json value

appname string Selects one of several sender agents for a user
account. Omit this to use default appname "" if we
have not supplied an appname to use.

channels string channel try order: "RBM", "SMS", RBM,SMS" or
"SMS,RBM"

address string Recipient id, for RCS and SMS channels: international
phone number (country+area+subscriber) no intl
prefix like 00 etc To send to several recipients,
separate with semicolons. To use different addresses
for different channels, separate with commas within
each recipient.

smsText string text to use instead of rich message if the SMS channel
is used

smsSender string SMS sender id, required if not two-way SMS, cannot
be reserved for other company

smsTwoway true or false SMS sender is taken from user’s number pool for
receiving answers, default false

richMessage json object, see below message to send through rich channel, see below

postbackSuffix string User defined string that is sent back to agent when
any of the suggestion buttons in this message is
pressed

trafficType string May be required in the future when sending
messages via a multi-use agent, to define which use is
selected. Currently one of "AUTHENTICATION",
"TRANSACTION", "PROMOTION", "SERVICEREQUEST",
"ACKNOWLEDGEMENT". Subject to change according
to Google RBM.

ttl integer Message time to live in minutes, forwarded to Google
or SMS operator when sending

conversationid string Feature of our SMS service, where receipts and two-
way answers to this message are marked with this id

costcenter string For billing, used to separate bill for one account into
portions e.g. by department

6

POST json key json value

metadata string identifying data not sent to phone but echoed back
with status reports and replies

properties json object/dictionary {"key1":"value1", "key2":"value2", …} for future use

1.4. HTTP response to /send
A successful request will return 200 OK and a json document of the following format. Note that the
request for sending is successful even if the send status of the message sending turns out to be
failed. A successfully sent message may sometimes not be delivered due to external factors (phone
turned off, phone subscription expired, no such subscriber, phone lacking capability of receiving
channel, opt-out from channel), but such requests will be reported as successful by this endpoint,
and the later fortune of the message can instead be followed via the delivery status callbacks to the
status webhook url. The Content-Type header of the response is application/json for all responses.

{
 "resultText" : "At least one message sent OK",
 "sent" : [{
 "result" : "OK",
 "id" : "1225831041592336384",
 "channels" : "RBM,SMS",
 "addresses" : "46701234567,46701234567"
 }, {
 "result" : "OK",
 "id" : "1225831041684611072",
 "channels" : "RBM,SMS",
 "addresses" : "46702345678,46702345678"
 }]
}

An unsuccessful request will give an appropriate 4xx or 5xx HTTP result code, and a json document of
the following form. Any result which is not "OK" is an error and means no message was sent.

{
 "result" : "ERROR",
 "error" : "Unauthorized"
}

In this example, the result code is 401, as appropriate for "Unauthorized". Syntax errors in the
message specification will yield 400 and "Validation error".

1.5. Explanation of response to /send

7

POST json key json value (strings
quoted)

resultText string "At least one message sent OK" if successful

sent json list One list element per recipient

result string OK if successful

id string id of the message used for future references to this
message, e.g. status callbacks

channels string Comma separated channels to try sending this message

addresses string Comma separated addresses to use for each channel

error string error description if not successful

1.6. Example Python 3 code

import json
import requests
import base64

authstringarray=("testuser" + ":" + "testpass").encode('utf-8')
authbase64=base64.b64encode(authstringarray).decode('utf-8')
headers={'Authorization':'Basic ' + authbase64}

sendreq = {}
sendreq["channels"] = "RBM,SMS"
sendreq["address"] = "46701234567;46702345678"
sendreq["richMessage"] = {
 "text":"Can you work extra hours on Christmas Day?",
 "suggestions":[
 { "reply" : { "text" : "Yes" } },
 { "reply" : { "text" : "No" } }
]
}
sendreq["metadata"] = 'Xmas 2026 employee 1234'
sendreq_json = json.dumps(sendreq)

url = 'https://secure.lekab.com/rime/send'
response = requests.post(url, data=sendreq_json, headers=headers)
sendresp = response.json()
if sendresp["sent"]:
 for m in sendresp["sent"]:
 print("Successful message id "+ m['id'] + " to " + m['addresses'] + " via " +
m['channels'])
else:
 print("Send error: " + sendresp["error"])

will output

8

Successful message id 1225831041592336384 to 46701234567,46701234567 via RBM,SMS
Successful message id 1225831041684611072 to 46702345678,46702345678 via RBM,SMS

9

Chapter 2. Details of how to construct the
richMessage json object
The rules for RCS Business Messages say that each message must have only one content type. This
service supports the message content types offered by Google at the time of writing: a text of up to
3000 bytes, one piece of media, a single card or a carousel of 2 to 10 cards. Each message can also
have a number (currently up to 11) of suggestions.

This means that the richMessage object can have a maximum of two top level fields, where one gives
the content type of the message. This field may be "text" for a text message, "contentInfo" for a
media message or "richCard" for a message with a single card or carousel of cards. The optional
second field "suggestions" is a list of json objects where each object is a suggestion, i.e. a button to
press to reply to the sending agent with a pre-determined text or to start an action on the
recipient’s phone, like opening the browser to a url or opening the phone calling app with a phone
number filled in. The top level list of suggestions can have a maximum of 11 suggestions, but for
most RBM-compatible mobile handsets, we do not recommend more than about 3-4 suggestions due
to graphical awkwardness of longer lists. The maximum of 11 suggestions does not include
suggestions inside cards, where each card can have up to 4 suggestions.

2.1. Structure of the four message types

2.1.1. Text messages

A text message consists of a text of up to 3000 bytes, and an (optional) list of suggestions. If the
message is 160 bytes or shorter and there are no suggestions, it is sent at a lower cost, so called
"Basic RBM", if it is longer or has at least one suggestion, the standard message price applies. Note
that the text can contain any UTF-8/Unicode characters, including emojis, but the current RCS
message standard (Universal Profile 2.x) does not include any formatting (often, confusingly, called
"rich text") for specifying font, bold, italic or underline.

{
 "text":"Yes or no, that is the question?",
 "suggestions":[
 { "reply" : { "text" : "ὠ� YES", "postbackData" : "YES"} },
 { "reply" : { "text" : "NO ὢ�", "postbackData" : "NO"} }
]
}

Fields and subfields:

json key json value

text string Message text UTF-8, max 3000 bytes (Basic RBM 160
bytes)

10

json key json value

suggestions Optional JSON list of
replies or actions or
mixed

0 to 11 suggestions, see below

2.1.2. Media messages

A media message contains a url reference to a server where the piece of media is served. A local
media server will be added to this API in the near future. The RBM standard actually includes three
different ways of specifying a media message, but two of them refer to messages that are pre-
uploaded to Google, and we do not support that uploading process. Therefore, the media url will be
contained in a contentInfo object. In addition, an (optional) list of suggestion buttons can be
included, but no title text or description text. For such combination messages, the card types are
appropriate.

The media in a media file may be a picture (jpeg, png etc.), a sound file (mp3 etc.), a video clip (mp4,
etc.) or a PDF file. See separate documentation for allowed types, data and pixel sizes and other
limitations. Note that while RBM sending is fully encrypted, Google can read all files sent, with no
way of sending files that are encrypted so that Google cannot read them.

{
 "contentInfo" : {
 "fileUrl" : "https://pictureserver.com/dogs/German_Shepherd.jpg",
 "thumbnailUrl" :
"https://pictureserver.com/dogs/thumbnails/German_Shepherd_tn.jpg",
 "forceRefresh" : true;
 },
 "suggestions":[
 ...
]
}

Fields and subfields:

json key json value

contentInfo json object Contains the media reference

fileUrl string Url where the media file is served

thumbnailUrl string Optional url where a thumbnail file is served

forceRefresh boolean Default false, instruct Google to reload the media file if
cached from before

suggestions Optional JSON list of
replies or actions or
mixed

0 to 11 suggestions, see below

11

2.1.3. Single card messages

A single card message contains a single card, and an optional list of suggestions. The card can have
a title string of up to x characters, a description text of up to y characters, a piece of media specified
as a url in a contentInfo object, and an (optional) list of up to 4 internal suggestions inside the card.
Depending on the size and type of the media, it is usually displayed in the card as a thumbnail
representation which can be clicked to display the media in full-window mode. Exact display
geometry is a function of the Messages app version on the phone and is also subject to change.

{
 "richCard" : {
 "standaloneCard" : {
 "cardOrientation" : "HORIZONTAL",
 "thumbnailImageAlignment" : "LEFT",
 "cardContent" : {
 "title": "A nice picture",
 "description": "Is this a cat?",
 "media": {
 "height" : "MEDIUM",
 "contentInfo": {
 "fileUrl" :
"https://upload.wikimedia.org/wikipedia/commons/2/2b/Mainecoon1.png"
 }
 },
 "suggestions": [
 { "reply" : { "text" : "It is a cat!", "postbackData" : "CAT YES"} },
 { "reply" : { "text" : "No, it is not!", "postbackData" : "CAT NO"} }
]
 }
 }
 },
 "suggestions":[
 ...
]
}

Fields and subfields:

json key json value

richCard json object Wraps the card or carousel

standaloneCard json object Wraps the single card

cardOrientation string Geometry of card display: "HORIZONTAL" or "VERTICAL"

thumbnailImage
Alignment

string Where in the card is media thumbnail: "LEFT" or "RIGHT"

cardContent json object Wraps the content of one card (the only one here)

title string Title of the card

12

json key json value

description string Text of the card

media json object Wraps media part of content of this card

height string Media height "SHORT" (112 DP), "MEDIUM" (168) or "TALL"
(264)

contentInfo json object Wraps the media urls like in a media message

fileUrl string Url where the media file is served

thumbnailUrl string Optional url where a thumbnail file is served

forceRefresh boolean Default false, instruct Google to reload the media file if cached
from before

suggestions In-card JSON
list of replies
or actions or
mixed

0 to 4 suggestions, see below

suggestions Optional JSON
list of replies
or actions or
mixed

0 to 11 suggestions, see below

2.1.4. Carousel messages

A carousel message contains 2-10 cards which can have the same types of content as the card in the
single card message, as well as an (optional) list of suggestions. The carousel displays the cards in a
scrollable fashion so that one of the cards is "on top" and visible. Depending on the size and type of
the media, it is usually displayed in the card as a thumbnail representation which can be clicked to
display the media in full-window mode. Exact display geometry is a function of the Messages app
version on the phone and is also subject to change. The Lovecraft-inspired example below has two
cards in the list.

{
 "richCard" : {
 "carouselCard" : {
 "cardWidth" : "MEDIUM",
 "cardContents" : [
 {
 "title":"In picturesque Arkham",
 "description":"Cthulhu Hotel service on call",
 "media":{
 "height" : "MEDIUM",
 "contentInfo" : {
 "fileUrl":
"https://upload.wikimedia.org/wikipedia/commons/6/63/Octopus_marginatus.jpg"
 }
 },
 "suggestions":[

13

 {
 "action" : {
 "text" : "Book a room",
 "postbackData" : "BOOK CTHULHU",
 "openUrlAction" : { "url" : "https://creepyhotels.com/cthulhu"
}
 }
 },
 {
 "action" : {
 "text" : "Call of Cthulhu",
 "postbackData" : "CALL CTHULHU",
 "dialAction" : { "phoneNumber" : "+46701234567" } # the called
phone does NOT have to be Android
 }
 }
]
 },
 {
 "title":"Close to Miskatonic U",
 "description":"Tentacle Inn creature comforts",
 "media":{
 "height" : "MEDIUM",
 "contentInfo" : {
 "fileUrl":
"https://upload.wikimedia.org/wikipedia/commons/d/dd/Loligo_vulgaris.jpg"
 }
 },
 "suggestions":[
 {
 "action" : {
 "text" : "Book a room",
 "postbackData" : "BOOK TENTACLE",
 "openUrlAction" : { "url" : "
https://creepyhotels.com/tentacle" }
 }
 },
 {
 "action" : {
 "text" : "Call the hotel",
 "postbackData" : "CALL TENTACLE",
 "dialAction" : { "phoneNumber" : "+46702345678" } # the called
phone does NOT have to be Android
 }
 }
]
 }
]
 }
 },
 "suggestions" : [

14

 {
 "reply" : { "text" : "Andover Area", "postbackData" : "MENU ANDOVER"}
 },
 {
 "reply" : { "text" : "Haverhill Area", "postbackData" : "MENU HAVERHILL"}
 },
 {
 "reply" : { "text" : "Salem Area", "postbackData" : "MENU SALEM"}
 }
]
}

Fields and subfields:

json key json value

richCard json object Wraps the card or carousel

carouselCard json object Wraps the carousel

cardWidth string Geometry of card display: "SMALL" or "MEDIUM"

cardContents list of json
objects

List of contents of 2-10 cards in carousel

title string Url where the media file is served

description string Url where the media file is served

media json object Wraps media part of content of this card

height string Media height "SHORT" (112 DP), "MEDIUM" (168) or "TALL"
(264), where TALL is not allowed for carousels with card width
SMALL

contentInfo json object Wraps the media urls like in a media message

fileUrl string Url where the media file is served

thumbnailUrl string Optional url where a thumbnail file is served

forceRefresh boolean Default false, instruct Google to reload the media file if cached
from before

suggestions In-card JSON
list of replies
or actions or
mixed

0 to 4 suggestions, see below

suggestions Optional JSON
list of replies
or actions or
mixed

0 to 11 suggestions, see below

15

2.1.5. Available suggestions for the suggestion list parameters

Suggestions can be either of type reply or of type action, and can be mixed as desired within a
suggestions list. A message has a suggestion list of 0 to 11 suggestions at the end of the message,
while each card contains a suggestion list of 0 to 4 suggestions. When a user selects a suggestion, an
incoming message is sent to the sender agent, where it is stored in our database and forwarded to
the sender account by callback to a webhook url (under implementation).

Suggestion reply

Sends an answering message with a preset content to the sender agent.

{
 "reply" : {
 "text" : "Salem Area",
 "postbackData" : "MENU SALEM"
 }
}

Fields and subfields:

json key json value

reply json object Wraps the reply

text string Button text of the reply suggestion. Also incoming message text
if postbackData is empty

postbackData string Incoming message text if present

Suggestion dialAction

Opens the telephone app on the recipient’s mobile handset with a given number pre-filled. The
phone to call does not have to be Android or even a mobile phone. Also informs the sending agent
with an incoming action message.

All actions have the button text field, the postbackData field and the fallbackUrl field where the
action is replaced with opening the mobile handset browser at the given url if the mobile handset
does not support the originally intended action. Probably the fallbackUrl will not be of much use,
since most actions are things mobile handsets usually do. In addition each action has its own
xxxAction field defining what action it is and containing the parameters for the specific action.

{
 "action" : {
 "text" : "ᾚ� Call Erik",
 "dialAction" : { "phoneNumber" : "+46701234567" }
 }
}

16

Fields and subfields:

json key json value

action json object Wraps an action suggestion

text string Button text of the action suggestion. Also incoming message
text if postbackData is empty

postbackData string Incoming message text if present

fallbackUrl string Url to open if mobile phone does not support this action
(unlikely)

dialAction json object Wraps a dialAction suggestion

phoneNumber string Number to present in the dialing app

Suggestion viewLocationAction

Opens the user’s default map app and selects the specified location. Also informs the sending agent
with an incoming action message.

All actions have the button text field, the postbackData field and the fallbackUrl field where the
action is replaced with opening the mobile handset browser at the given url if the mobile handset
does not support the originally intended action. Probably the fallbackUrl will not be of much use,
since most actions are things mobile handsets usually do. In addition each action has its own
xxxAction field defining what action it is and containing the parameters for the specific action.

{
 "action" : {
 "text" : "Famous place",
 "postbackData" : "TOUR EIFFEL",
 "viewLocationAction" : {
 "latLong" : {
 "latitude" : 48.858093,
 "longitude" : 2.294694
 },
 "label" : "Voila"
 }
 }
}

Fields and subfields:

json key json value

action json object Wraps an action suggestion

text string Button text of the action suggestion. Also incoming message
text if postbackData is empty

postbackData string Incoming message text if present

17

json key json value

fallbackUrl string Url to open if mobile phone does not support this action
(unlikely)

viewLocationActi
on

json object Wraps a viewLocationAction suggestion

latLong json object Wraps a latitude+longitude object

latitude float Latitude -90.0000 to +90.0000 Southern hemisphere is negative

longitude float Longitude -180.0000 to +180.0000 West of Greenwich is negative

label string Map marker label

Suggestion createCalendarEventAction

Opens user’s default calendar app and starts the new calendar event flow with the event data pre-
filled. Also informs the sending agent with an incoming action message.

All actions have the button text field, the postbackData field and the fallbackUrl field where the
action is replaced with opening the mobile handset browser at the given url if the mobile handset
does not support the originally intended action. Probably the fallbackUrl will not be of much use,
since most actions are things mobile handsets usually do. In addition each action has its own
xxxAction field defining what action it is and containing the parameters for the specific action.

{
 "action" : {
 "text" : "Save the date",
 "createCalendarEventAction" : {
 "startTime": "2026-04-30T17:00:00Z",
 "endTime": "2026-04-30T21:00:00Z",
 "title": "Valpurgis night bonfire",
 "description": "A good time will be had by all"
 }
 }
}

Fields and subfields:

json key json value

action json object Wraps an action suggestion

text string Button text of the action suggestion. Also incoming message
text if postbackData is empty

postbackData string Incoming message text if present

fallbackUrl string Url to open if mobile phone does not support this action
(unlikely)

18

json key json value

createCalendarEv
entAction

json object Wraps a calendarEventAction suggestion

startTime string Timestamp in RFC3339 UTC "Zulu" format, with nanosecond
resolution and up to nine fractional digits. Examples: "2014-10-
02T15:01:23Z" and "2014-10-02T15:01:23.045123456Z"

endTime string Timestamp in RFC3339 UTC "Zulu" format, as startTime

title string Event title

description string Event description

Suggestion openUrlAction

Opens the user’s default web browser app to the given URL. Also informs the sending agent with an
incoming action message.

All actions have the button text field, the postbackData field and the fallbackUrl field where the
action is replaced with opening the mobile handset browser at the given url if the mobile handset
does not support the originally intended action. Probably the fallbackUrl will not be of much use,
since most actions are things mobile handsets usually do. In addition each action has its own
xxxAction field defining what action it is and containing the parameters for the specific action.

{
 "action" : {
 "text" : "Book the hotel",
 "postbackData" : "BOOK CTHULHU",
 "openUrlAction" : {
 "url" : "https://creepyhotels.com/cthulhu"
 }
 }
}

Fields and subfields:

json key json value

action json object Wraps an action suggestion

text string Button text of the action suggestion. Also incoming message
text if postbackData is empty

postbackData string Incoming message text if present

fallbackUrl string Url to open if mobile phone does not support this action
(absurdly unlikely)

openUrlAction json object Wraps an openUrlAction suggestion

url string Url to open in browser

19

Suggestion shareLocationAction

Opens the RCS app’s location chooser so the user can pick a location to send to the agent. Also
informs the sending agent with an incoming action message, when the suggestion button is pressed.
The location data arrives as a second incoming message of type LOCATION, when the user shares it.

All actions have the button text field, the postbackData field and the fallbackUrl field where the
action is replaced with opening the mobile handset browser at the given url if the mobile handset
does not support the originally intended action. Probably the fallbackUrl will not be of much use,
since most actions are things mobile handsets usually do. In addition each action has its own
xxxAction field defining what action it is and containing the parameters for the specific action.

{
 "action" : {
 "text" : "Where are you?",
 "shareLocationAction" : { }
 }
}

Fields and subfields:

json key json value

action json object Wraps an action suggestion

text string Button text of the action suggestion. Also incoming message
text if postbackData is empty

postbackData string Incoming message text if present

fallbackUrl string Url to open if mobile phone does not support this action
(absurdly unlikely)

shareLocationAct
ion

json object Wraps an openUrlAction suggestion, has no parameters

20

Chapter 3. Opting in and out and blocking of
numbers
The phone user can always send in a text message to the service with the text "STOP" to get added
to the blocklist of that specific sender account. If the user later sends in a text message with the text
"START", the blocking is removed.

Google RBM has announced that there will be unsubscribe and resubscribe buttons in the Messages
app to achieve the same purpose, but currently any use of such buttons is not forwarded to our
system in the Google RBM announced format (or any other format), so we expect that in later
versions. The unsubscribe and resubscribe buttons in the current version seem to affect settings
inside Google RBM which we currently cannot control or access. So a customer that unsubscribes
with a Google button cannot yet resubscribe by sending in "START", but will need to resubscribe
with the corresponding Google button.

Opting in and out does not affect our security-related blocking of country codes to which an
account cannot send. These blocking rules will be set up so that sending is only attempted to
countries where the sending RBM agent is registered, verified and launched. This by default
includes the SMS channel, but user accounts could possibly relax the country code blocking rules,
to achieve fallback to SMS when RBM sending fails to a foreign country.

21

Chapter 4. Callback of receipts and incoming
In order to track status of sent messages and receive incoming responses, the API user can set up
notification of these events through callback (pushing, event-driven reporting) to a user-specified
callback URL (webhook) where the user’s system is listening for HTTP requests. The user’s system
must respond with a 200 OK (or similar) HTTP response, or we will try to resend the callback.

When our system receives a status receipt from the sending channel, and that receipt does not
imply trying another channel for sending, we forward the status receipt to the webhook URL set by
the API user. Also, if an incoming message arrives to the RBM agent or to an SMS two-way number,
we forward the incoming message to another webhook URL (which may, of course be the same URL
as for receipts).

There is currently only one callback notification format, called "JSON". The user can set callback
type "JSON" for receipts and "NONE" for incoming, or vice versa, with the expected result. There is
an HTTP POST API endpoint for setting the webhook urls.

4.1. The /seturl endpoint for setting callback
webhooks
The endpoint must be called with authentication for the user account that owns the agent. This will
be the same authentication as for sending from the agent with the present API. One account is not
allowed to set webhooks for another account.

Currently, the endpoint writes the new URL directly in the database, and for every callback event,
the database is read at that time. This is subject to change when API traffic increases, when some
kind of caching of callback URLs will probably be implemented. We discourage depending on
instant URL changes. To distinguish between different message batches, we offer the metadata and
conversationid fields in the sent message, which will be returned with the receipt, and with
incoming responses which are estimated to be answers to a given message.

4.1.1. POST request example: setting both endpoints

https://secure.lekab.com/rime/seturl

The example call sets two urls, one for receiving receipts and another for receiving incoming
responses.

{
 "receipttype" : "JSON",
 "receipturl" : "https://mycompany.com/mess/receipts?receiptkey=klm765",
 "receiptheaders": "{\"Importantheader\":\"Hello\"}",
 "incomingtype" : "JSON",
 "incomingurl" : "https://mycompany.com/mess/incoming?incomingkey=abc123"
}

22

4.1.2. Explanation of parameters for /seturl

POST json key json value

receipttype string The output format for receipt callback. "JSON" or
"NONE" or null/not set for no change

receipturl string The webhook url for receipt callback. Can have url
query parameters e.g. for authentication

receiptheaders string of JSON JSON string containing Map of String to String, sent as
headers e.g. for authentication, only set when url is
set

incomingtype string The output format for incoming callback. "JSON" or
"NONE" or null/not set for no change

incomingurl string The webhook url for receipt callback. Can have url
query parameters e.g. for authentication

incomingheaders string of JSON JSON string containing Map of String to String, sent as
headers e.g. for authentication, only set when url is
set

4.1.3. HTTP response to /seturl

A successful request will return 200 OK and a json document of the following format, containing the
current status of the callback webhook URLs for the user. The Content-Type header of the response
is application/json for all responses.

{
 "userid" : "12345",
 "appname" : "",
 "receipttype" : "JSON",
 "receipturl" : "https://mycompany.com/mess/receipts?receiptkey=klm765",
 "receiptheaders" : "{\"Importantheader\":\"Hello\"}",
 "incomingtype" : "JSON",
 "incomingurl" : "https://mycompany.com/mess/incoming?incomingkey=abc123"
}

4.2. Format of callback to user webhook of status and
incoming
The only callback type choice that results in any callback is "JSON".

4.2.1. Callback of status

For RBM messages, only three statuses can happen: SENDFAIL, DELIVERED and READ. The SENDFAIL
status is only called back for the last channel in the list of channels to try. SMS messages can receive
other failing statuses from the operators, summed into the status UNDELIVERABLE that likewise is only

23

called back if SMS is the last channel to try.

Example callback of status DELIVERED

{
 "id": "1249385535177367552",
 "userid": "12345",
 "appname": "",
 "time": "2025-09-08T13:32:24Z",
 "channel": "RBM",
 "from": "mycompany_abcdabcd_agent",
 "to": "46701234567",
 "status": "DELIVERED",
 "metadata": "This is the metadata",
 "conversationid": "ABC123"
}

Example callback of status READ

{
 "id": "1249385535177367552",
 "userid": "12345",
 "appname": "",
 "time": "2025-09-08T13:32:30Z",
 "channel": "RBM",
 "from": "mycompany_abcdabcd_agent",
 "to": "46701234567",
 "status": "READ",
 "metadata": "This is the metadata",
 "conversationid": "ABC123"
}

Explanation of fields in status receipt callback

json key json value

id string of long integer The id of the message, same as was returned when
sending

userid string of long integer The id of the user account owning the message

appname string Selects one of several sender agents for a user
account. Will be the default appname "" if we have
not supplied an appname to use.

time string Date and time in UTC/Greenwich/Zulu zone, ISO 8601
format with second precision, always ends in Z

channel string Channel which the status receipt refers to: RBM or
SMS

24

json key json value

from string Sender agent for RBM, sender id for SMS

to string Address (phone number) to which the message was
sent in the channel

status string One of DELIVERED, READ, SENDFAIL,
UNDELIVERABLE

statusText string Sometimes explanation of failed status (not always
present, depends on what we know)

metadata string User-defined data associated with the sent message,
not sent to/from Google RBM or SMS operator

conversationid string (Legacy) Short user-defined data (up to 255 chars)
associated with the sent message, not sent to/from
Google RBM or SMS operator

4.2.2. Callback of incoming

Incoming messages are generated when the recipient of a message uses one of the suggested reply-
or action-buttons in the message, or when the user responds with a text, media item or location in
the conversation with the agent in the Messages app on the mobile device. Google RBM services are
expected to add buttons that generate opt-out (STOP) and opt-in (START) messages, but we have not
yet seen such buttons or messages, so users for now have to generate them themselves by sending
text messages containing the word "STOP" or "START".

There are currently 8 different types of incoming messages. The incoming message type is found in
the field "type", and will be one of REPLY, ACTION, STOP, START, TEXT, USERFILE, LOCATION, SMS. Each of the
types will have all the general fields id, userid, appname, time, channel, from, to, and type. If we can
make a reasonable guess at which message this message is in response to (either from pressing a
suggestion button which transmits that info in the background, or from guessing the last message of
the conversation), we will also give that message’s id (responseto), metadata (resptometadata) and
conversationid (resptoconvid).

Example callback of incoming of type REPLY

{
 "id": "1249385655331594240",
 "userid": "12345",
 "appname": "",
 "time": "2025-09-08T13:32:32Z",
 "channel": "RBM",
 "from": "46701234567",
 "to": "mycompany_abcdabcd_agent",
 "responseto": "1249385535177367552",
 "type": "REPLY",
 "text": "ABCD",
 "buttontext": "YES",
 "resptometadata": "This is the metadata",

25

 "resptoconvid": "ABC123"
}

Explanation of fields in incoming message callback

json key json value

id string of long integer The id of the message in our incoming message table

userid string of long integer The id of the user account owning the incoming
message

appname string Selects one of several agents for a user account. Will
be the default appname "" if we have not supplied an
appname to use.

time string Date and time in UTC/Greenwich/Zulu zone, ISO 8601
format with second precision, always ends in Z

channel string Channel which the status receipt refers to: RBM or
SMS

from string Address (phone number) from which the message
was received in the channel

to string Receiving agent for RBM, incoming number for SMS

responseto string Best guess of which sent message id this is a response
to, always correct for buttons

type string One of REPLY, ACTION, STOP, START, TEXT, USERFILE,
LOCATION, SMS

text string Incoming message for most message types, for
buttons the postbackdata specified when sending (see
below)

buttontext string Text on reply or action button that was pressed to
generate the message (see below)

filepayload string Json object with data (url, size etc) of media file sent
in by the user (see below)

filethumb string Json object with data (url, size etc) of media file
thumbnail usually generated by Google RBM (see
below)

locationlatlong string e.g. 59.606927;16.567048 latitude and longitude
semicolon separated in degrees with decimals (see
below)

postbacksuffix string Additional text that is sent back from every button in
message, defined when sending

resptometadata string User-defined data associated with the sent message to
which this is probably a response, not sent to/from
Google RBM or SMS operator

26

json key json value

resptoconvid string (Legacy) Short user-defined data (up to 255 chars)
associated with the sent message to which this is
probably a response, not sent to/from Google RBM or
SMS operator

4.2.3. Explanation of the different incoming message types

• The REPLY message comes from the phone user pressing a reply suggestion button. The text field
value will be the postbackdata specified when sending. The button text is also given.

• The ACTION message comes from the phone user pressing an action suggestion button, for
displaying a url in the browser, setting up a call to a phone number, displaying coordinates on a
map, etc. The text field value will be the postbackdata specified when sending. The button text
is also given. Note that Google RBM does not supply the exact variety of action in the incoming
message, so if that is specifically needed, it should be included in the postback message when
sending.

• The STOP message arises when the phone user sends a text message with the text "STOP" (any
case of letters). It should also come when the phone user presses an Unsubscribe button, but that
is, apparently, not yet implemented by Google RBM.

• The START message arises when the phone user sends a text message with the text "START" (any
case of letters). It should also come when the phone user presses a Subscribe button, but that is,
apparently, not yet implemented by Google RBM.

• When the RBM user writes a text in the chat, a TEXT incoming message is generated. The text
field contains the text.

• When the RBM user sends in a media file (picture, video, sound), this gives a USERFILE incoming
message. The incoming file will be stored in a Google RBM public server, and a url pointing to
the file will be found inside the json object of the filepayload field while the url to the Google
RBM generated thumbnail of the incoming file will be found in the filethumb field. We are
planning to file away the incoming media from Google to keep it safe and easy to refer to in our
own media server, when that is implemented. If the phone user sends both a text and a media
file, two messages will be received by the agent. Typical content of the USERFILE filepayload,
where the fileUri can be called to retrieve the media:

{"mimeType":"image/jpeg","fileSizeBytes":422754,"fileUri":"https://rcs-copper-
eu.googleapis.com/blob/75b23925-54d6-7654-9515-
e5127833eeb1/J7IO2A14B9PMG_0U7WegoGUqOmtX4f8UWEljx3Lo?ct=aW1hZ2bulnBlZw","fileName":"7
20332000011178328.jpg"}

• The shareLocation action will generate an ACTION incoming message when pressed, and when
the user subsequently submits a position (probably from the phone’s GPS), a LOCATION incoming
message with the given location will be generated. The LOCATION message locationlatlong field
will be a semicolon separated string with the latitude in degrees (with decimals) in the interval
-90 to 90 degrees (south is negative), and the longitude in degrees (with decimals) in the interval
-180 to 180 degrees (west is negative). Example : "59.327402;18.055316".

27

• If the messages was transmitted through the SMS channel and the phone user responds to the
sender number (or uses a reserved incoming SMS number), an SMS incoming message will be
generated. The SMS message text will be found in the text field.

Parameter fields occuring in each type of incoming message

parameter REPLY ACTIO
N

STOP START TEXT USERF
ILE

LOCA
TION

SMS

text x x x("STO
P")

x("STA
RT")

x x

buttontext x x

postbacksuffix x x

filepayload x

filethumb x

locationlatlon
g

x

28

	Lekab Rich Messaging Multichannel API
	Lekab Rime Rest Web Service
	Introduction
	Authentication methods available for requests
	How to obtain an oauth token from our oauth server
	POST request examples
	Explanation of parameters

	Chapter 1. The /send endpoint
	1.1. POST request example: a text type message without suggestions
	1.2. POST request example: single card type message, suggestions in the card and after
	1.3. Explanation of parameters for /send
	1.4. HTTP response to /send
	1.5. Explanation of response to /send
	1.6. Example Python 3 code

	Chapter 2. Details of how to construct the richMessage json object
	2.1. Structure of the four message types
	2.1.1. Text messages
	2.1.2. Media messages
	2.1.3. Single card messages
	2.1.4. Carousel messages
	2.1.5. Available suggestions for the suggestion list parameters

	Chapter 3. Opting in and out and blocking of numbers
	Chapter 4. Callback of receipts and incoming
	4.1. The /seturl endpoint for setting callback webhooks
	4.1.1. POST request example: setting both endpoints
	4.1.2. Explanation of parameters for /seturl
	4.1.3. HTTP response to /seturl

	4.2. Format of callback to user webhook of status and incoming
	4.2.1. Callback of status
	4.2.2. Callback of incoming
	4.2.3. Explanation of the different incoming message types

