
SMS API REST Web Service
LEKAB Communication Systems AB

Version 5.1.161, 2024-06-10

SMS API REST Web Service
Introduction. 1

Different authentication methods available for requests . 1

Supported character sets in the resulting SMS and pricing issues. 2

1. The /send endpoint. 4

1.1. GET request example . 4

1.2. POST request example. 4

1.2.1. Explanation of parameters for /send . 4

1.2.2. HTTP response to /send . 7

1.2.3. Explanation of response to /send . 7

1.2.4. Example Python 3 code . 8

1.2.5. Tag filter usage. 8

1.2.6. Use of saved text templates and substitution of place holders . 10

2. The /send/single endpoint. 12

2.1. POST request example. 12

2.1.1. Explanation of parameters for /send/single . 12

2.1.2. HTTP response to /send/single . 14

2.1.3. Explanation of response to /send/single . 14

3. The /status endpoint. 15

3.1. GET request example. 15

3.2. POST request example. 15

3.2.1. Explanation of parameters for /status . 15

3.2.2. HTTP response to /status . 16

3.2.3. Explanation of response to /status . 17

3.2.4. Message status codes . 17

3.2.5. Non-final statuses . 18

3.2.6. Successful final status . 18

3.2.7. Failing final statuses. 18

3.2.8. Unclear . 18

3.2.9. Example Python 3 code . 19

4. The /status/single endpoint. 20

4.1. POST request example. 20

4.1.1. Explanation of parameters for /status/single . 20

4.1.2. HTTP response to /status/single. 21

4.1.3. Explanation of response to /status/single . 21

5. The /incoming endpoint. 22

5.1. GET request example. 22

5.2. POST request example. 22

5.2.1. Explanation of parameters for /incoming. 22

5.2.2. HTTP response to /incoming . 23

5.2.3. Explanation of response to /incoming . 24

5.2.4. Example Python 3 code . 24

6. The /incoming/single endpoint . 25

6.1. POST request example. 25

6.1.1. Explanation of parameters for /incoming/single. 25

6.1.2. HTTP response to /incoming/single . 26

6.1.3. Explanation of response to /incoming/single . 26

Introduction
© 2006 - 2024 LEKAB Communication Systems AB. Version 5.1.161, 2024-06-10.

This is a Web Service using HTTP GET or HTTP POST requests to send SMS, read status of SMS and
retrieve incoming SMS.

There are three main endpoints: /send, /status and /incoming, with the obvious purposes.

Each of the endpoints supports the same function with GET and POST, but in the GET case, parameters
are given in the calling URL (after a ? sign, separated by & signs) , while in the POST case the
parameters are given in a json document in the HTTP POST request body. UTF-8 encoding is assumed
in all HTTP bodies. The GET case, for historical reasons, allows either ISO-8859-1 or UTF-8 based url-
encoding of the message using different query parameters.

Both the GET and the POST return responses in the HTTP response body as a json document.

Each of the endpoints also has a variant, single data object HTTP POST endpoint (send one SMS,
retrieve one status or one incoming SMS), aimed for integration into less sophisticated calling
applications which cannot handle lists of objects: /send/single, /status/single and
/incoming/single.

The format of the input and output json documents and the input url parameters are described
below.

Different authentication methods available for
requests
Every request to the service must include authentication, i.e. username and password (or
equivalent). For POST requests these can be given in in the corresponding fields in the JSON
document which is sent in the (automatically HTTPS = SSL/TLS encrypted) HTTP body. Since GET
requests cannot have a body, instead username and password can be sent in the U and P url
parameters. Note that everything in the URL after the host name is also part of the encrypted
request, so url parameters are as safe during transfer as parameters in the body.

We also offer three different alternative ways of supplying these username and password
credentials available in both the GET and POST cases:

1. Username and password can be given as standard Basic authentication, in which the header
Authorization should have the value Basic + token, where the token is the Base64 encoding of (a
UTF-8 byte array representation of) username:password. Here testuser:testpass will be encoded
as dGVzdHVzZXI6dGVzdHBhc3M=

2. Username and password can be given in the HTTP headers, X-Lekab-Userid and X-Lekab-
Password, respectively. The values have to be the Base64 encoding of (a UTF-8 byte array
representation of) the username or password to allow non-US-ASCII characters. Here testuser
will be encoded as dGVzdHVzZXI= and testpass as dGVzdHBhc3M=

3. An API key generated in the Web Portal can be used as a query parameter key, as the value of

1

the header X-API-Key or as the field apikey in the POST request body. The length of the key varies
depending on the length of the username (which is contained within the key).
TUxVOmRHVnpkSFZ6WlhJOjlKUUczTXU2TVZVU1Exd3Y is a possible example key for the username
testuser. The key is independent of the account password.

If any of the alternative methods of authentication are used, parameter values pertaining to other
authentication methods should be omitted or set to the empty string "".

Supported character sets in the resulting SMS and
pricing issues
The character set used in the input to the API does not affect the resulting SMS. Instead, the
characters that are requested to be sent will determine the size and pricing of the message.

Most network operators globally support all printable characters in SMS messages. They also
support the sending of longer SMS messages by dividing the content into several SMS message parts
(with some exceptions, like South Korea). An SMS message part is limited in size to 140 bytes; longer
messages will require more parts. The character set used, not the language, will determine how
many parts are needed. The pricing is based on the number of SMS message parts sent. Normally,
the recipient’s mobile handset will automatically reassemble the parts of a divided message in the
correct order, without any action needed by the recipient.

The GSM standard regulates SMS communication globally. While all characters are supported, some
characters used in Western European languages are given special treatment. Two character
encodings (character sets) are supported by almost all network operators in the world, and
therefore by us: GSM-7 and UCS-2.

By GSM-7 we mean the internationally common GSM-7 alphabet according to GSM 03.38 / 3GPP
23.038 without any national language shift table (only the basic character extension). See for
example https://en.wikipedia.org/wiki/GSM_03.38 for details.

The GSM-7 encoding uses 7 bits per character to encode only characters from these Western
European languages (including numbers and some punctuation), while the UCS-2 encoding can
encode characters from any Unicode alphabet and uses 16 bits per character. If every character in a
message can be encoded with GSM-7, the message will employ the more compact GSM-7 encoding.
If any character in a message cannot be encoded with GSM-7, UCS-2 will be used for the entire
message.

Since the GSM-7 is a 7-bit character set, 160 characters will fit into one 140 bytes SMS part. The UCS-
2 is a 16-bit character set and can accommodate only 70 characters in a 140 bytes SMS part. If a
GSM-7 encoded message is longer than 160 characters, or a non-GSM-7 encoded message is longer
than 70 characters, it will be divided into more than one part. Due to how such parts are
constructed, multi-part SMS messages can only fit 153 GSM-7 characters or 67 UCS-2 characters per
part. All parts of a message will use the same encoding, so they will all be GSM-7 or all UCS-2.

The inclusion, even accidentally, of a non-GSM-7 encodable character in a message will therefore
transform it into a UCS-2 encoded message. This message will have a larger number of shorter
parts, and the send-out will be more costly. Therefore, when sending SMS messages in Western

2

https://en.wikipedia.org/wiki/GSM_03.38

European languages, it is often advisable to be on the lookout for any such characters that may be
included in the message. For instance, some characters automatically generated in some
circumstances by Microsoft Word, like curved citation marks (curved quotes) and unbreakable
spaces, are not included in the GSM-7 character set. French vowels with the accent circonflexe also
do not fit into GSM-7. Unsurprisingly, Cyrillic, Arabic, Chinese, Thai, Japanese and many other
alphabets are not included, and neither are emojis, while ordinary text in English, Swedish,
Finnish, German and similar languages will fit into the GSM-7 encoding. The Euro-sign (European
Union currency symbol) is included in the GSM-7 basic character extension, which we support.

3

Chapter 1. The /send endpoint
Used for sending SMS

1.1. GET request example
e.g. from web browser or curl

curl
https://secure.lekab.com/restsms/api/send?U=testuser&P=testpass&T=46701234567,46CALLME
NOW&F=LEKAB&M8=Hall%C3%A5+d%C3%A4r!&2=TRUE&X=CONV123

1.2. POST request example
probably from an application

https://secure.lekab.com/restsms/api/send

With the contents of the HTTP body:

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "to":["46701234567","46CALLMENOW"],
 "message":"Hallå där!","twoway":true,"conversation":"CONV123","checknumber":true}

1.2.1. Explanation of parameters for /send

The json body of the request can contain maximum 500000 UTF-8 encoded characters.

POST json
key

GET
query
param

json value
(strings
quoted)

query param value
(strings without
quotes)

username U string string username of the API account in
the service

password P string string password of the API account in
the service

apikey key string string API key of the API account in the
service

to T json list of
string

comma separated
strings

recipient phone number list

4

POST json
key

GET
query
param

json value
(strings
quoted)

query param value
(strings without
quotes)

tosubst TS, H json list of
json objects,
see format
below

comma separated
strings, URL-encoded
UTF-8 , see below

recipient numbers, substitutions
and placeholders. See
explanation below

from F string string sender id of the SMS (ignored for
two-way SMS)

message M string UTF-8 string URL-encoded
ISO-8859-1

Message to send (alternative GET
query param, only specify one)

message M8 string UTF-8 string URL-encoded
UTF-8

Message to send (alternative GET
query param, only specify one)

templateid TPID string
containing
long integer

string containing long
integer

id of saved template (edited in
web portal). See explanation
below

onlytemplate
placeholders

TPONLY boolean
(default false)

T, TRUE, Y or YES Only replace template derived
place holders of the form
{Text:abc} and {DateTime:def},
not the words abc or def
themselves. See explanation
below

twoway 2 boolean
(default false)

T, TRUE, Y or YES sender id from reply number
pool

conversation X string string conversation id not sent but
echoed with two-way reply

costcenter C string string grouping in billing

flash Z boolean
(default false)

T, TRUE, Y or YES send flash SMS. When sending a
flash SMS make sure the SMS
contains only characters from the
GSM 03.38 character set and
contains 160 characters or less.

validminutes V string
containing
integer

string validity time of SMS (default is
1440 i.e. 24h)

shownumber
parts

N boolean
(default false)

T, TRUE, Y or YES number of SMS parts of multipart
message in HTTP response

defaultcountr
ycode

D string
containing
digits

string containing digits replaces leading zero in to
numbers starting with single zero

5

POST json
key

GET
query
param

json value
(strings
quoted)

query param value
(strings without
quotes)

toaddressboo
kcustomtagfil
ter

A string
containing
tag filter

string URL-encoded
UTF-8 containing tag
filter

filter specifying combination of
tags in the user’s address book

toaddressboo
ktagfilterjson

(n/a) json list of
filter parts
(see below)

(n/a) filter specifying combination of
tags in the user’s address book

toaddressboo
ksavedtagfilt
ers

S json list of
saved tag
filter names

comma separated
strings each URL-
encoded UTF-8
containing saved filter
name

names of saved tag filters from
the user’s address book

toaddressboo
kgroups

G json list of
group/distrib
ution list
names

comma separated
strings each URL-
encoded UTF-8
containing
group/distribution list
name

names of groups/distribution lists
from the user’s address book

replacechara
cters

R boolean
(default false)

T, TRUE, Y or YES Replace certain characters not in
the GSM-7 standard character set
with similar characters in that set
(e.g. non-breaking space u00A0
replaced by ordinary space
u0020). Only applied if enabled
for the account; please contact
customer service for details.

scheduletime AT string
containing
time

string URL-encoded
UTF-8 containing time

Schedule sendout for sending in
the future. ISO 8601 standard
format like "2022-02-
14T15:00:00Z" or "2022-02-
14T15:00Z" or "2022-02-
14T17:00:00+02:00 or "2022-02-
14T13:00-02:00"

checknumber check boolean
(default false)

T, TRUE, Y or YES Check using Google library if
recipient number format is in an
official mobile number series for
the country in question and reject
if not a possible mobile number.
Will reject too long numbers used
for cheaper incoming SMS, but
those are rarely recipients.

6

1.2.2. HTTP response to /send

A successful request will return 200 OK and a json document of either of the two following formats
(depending on the shownumberparts/N parameter). Note that the request for sending is successful
even if the send status of some SMS sendings are failed. A successfully sent message may sometimes
not be delivered due to external factors (phone turned off, phone subscription expired, no such
subscriber), but such requests will be reported as successful by this endpoint, and the later fortune
of the message can be followed via the /status or /status/single endpoints. A scheduled message is
reported as accepted, and will have status SCHEDULED until the scheduled send time. The Content-
Type header of the response is application/json for all responses.

{
 "accepted" : [{
 "to" : "46701234567",
 "id" : "354284289"
 }],
 "rejected" : ["46CALLMENOW"]
}

Or with number of parts enabled

{
 "accepted" : [{
 "to" : "46701234567",
 "id" : "354284289",
 "parts" : "1"
 }],
 "rejected" : ["46CALLMENOW"]
}

Note that in this example, the mobile recipient number was accepted while the alphanumeric
recipient number was rejected. Note that the checknumber parameter will lead to rejection of some
unofficial mobile numbers, e.g. the extra long numbers issued as a group of numbers by some
operators as a less expensive way of having many different numbers. These are usually not real
mobile phones, but may in some cases be Internet-of-things-type devices, so to send to such
numbers, checknumber should be set to false.

1.2.3. Explanation of response to /send

POST json key json value (strings
quoted)

accepted json list of json
documents

list of acknowledged queued SMS, never empty because
no queued SMS will cause a HTTP 400 status

rejected json list of string list of rejected recipients

to string recipient phone number

7

POST json key json value (strings
quoted)

id string id of the SMS (use this for future references to this SMS,
e.g. for status queries)

parts string number of SMS parts (decimal digits only) sent, since a
SMS has a max length depending on character set

1.2.4. Example Python 3 code

import json
import requests

sendreq = {"username" : "testuser", "password": "testpass", "from": "Lekab",
"to":["46700112233","46CALLMENOW"], "message":"Tjo flöjt!"}
sendreq_json = json.dumps(sendreq)
url = 'https://secure.lekab.com/restsms/api/send'
response = requests.post(url, data=sendreq_json)
sendresp = response.json()
for a in sendresp["accepted"]:
 print("SMS to recipient " + a["to"] + " got message id " + a["id"])
for r in sendresp["rejected"]:
 print("Cannot send to " + r)

will output

SMS to recipient 46700112233 got message id 6205
Cannot send to 46CALLMENOW

1.2.5. Tag filter usage

A user, or a company with many users, can have an address book in the service, with contacts that
each contain a phone number that can receive SMS messages. These contacts can be marked with
tags consisting of a tag type and a tag value. For instance, a contact can be marked with the tag
Base:STO if the person is based in Stockholm. The same contact can have many tags, for instance
Group:Management or On call:Yes. Which tags types and tag values are used is up to the
user/company, but they should preferably consist of letters and numbers, and can especially not
contain the characters ;, | or :. A tag filter in the SMS rest interface consists of a list of filter parts,
which are connected by logical AND (a contact is selected only if it fulfills every part of the filter). A
filter part consists of a tag type and a list of tag values. A contact fulfills the filter part criterion if it
has a tag with the given tag type and one of the given tag values (logical OR). Filters can be given
either as a string in GET or POST or as a json document in the POST input. Using the string notation,
the example contact would fulfill a Base:STO|OSL|CPH;On call:Yes filter, which consists of two filter
parts, one saying that the contact needs to have a Base:STO or a Base:OSL or a Base:CPH tag, and the
other that the contact needs to have an On call:Yes tag. Note that filter parts are separated by a
semicolon, tag type and tag values are separated by a colon and tag values are separated by vertical

8

bars (UNIX pipe symbols).

A user may have access to several address books, but only the address book set as default address
book for the user will be searched with the tag filter.

If a tag filter is given, the to parameter is optional, and any numbers selected both by the filter and
by the to parameter will not receive duplicate messages but only one. Only one tag filter can be
given per send call.

In the following three parameter examples (two POST, one GET), the same tag filter is specified. Note
the URL-encoding of the filter string in the GET parameter.

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "toaddressbookcustomtagfilter":"Base:STO|OSL|CPH;On call:Yes",
 "message":"Hallå där!","conversation":"CONV123"}

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "toaddressbooktagfilterjson":[{"tagtype":"Base","tagvalues":["STO","OSL","CPH"]},{
"tagtype":"On call","tagvalues":["Yes"]}],
 "message":"Hallå där!","conversation":"CONV123"}

/send?U=testuser&P=testpass&A=Base%3aSTO%7cOSL%7cCPH%3bOn%20call%3aYes&F=LEKAB&M8=Hall
%C3%A5+d%C3%A4r!&X=CONV123

Tag filters may be saved in the address book for repeated use, under a name. Note the
toaddressbooksavedtagfilters/S parameter which takes a list of such names.

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "toaddressbooksavedtagfilters":["Pilots Helsinki","Security Helsinki"],
 "message":"Hallå där!","conversation":"CONV123"}

/send?U=testuser&P=testpass&S=Pilots%20Helsinki,Security%20Helsinki&F=LEKAB&M8=Hall%C3
%A5+d%C3%A4r!&X=CONV123

It is recommended to use the more flexible tag filters, but legacy customers using named
groups/distribution lists can give a list of such names in the toaddressbookgroups/G parameter.

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "toaddressbookgroups":["IT Dept","Managers"],
 "message":"Hallå där!","conversation":"CONV123"}

/send?U=testuser&P=testpass&G=IT%20Dept,Managers&F=LEKAB&M8=Hall%C3%A5+d%C3%A4r!&X=CON

9

V123

1.2.6. Use of saved text templates and substitution of place holders

It is sometimes convenient to use a set of standard message templates where only a part of the
message text is unique to the individual message. In such a template, some character sequences
function as place holders, which are to be substituted with the individualized text pieces. In the
web portal, such templates can be edited and stored with an id. The id of the template is shown on
the editing page in the newest version of the web portal, and is used in this API with the templateid
/ TPID parameter. If a template id is given, any explicit message given in the message / M / M8
parameters is ignored. When no template id is given, a template text with placeholders for
substitutions can be equally well be supplied as the message.

Hello CUSTOMER! You can pick up your delivery ITEMNO at our store in CITY. Best
regards, Our Company

Currently, this API allows substitutions in messages to recipient phone numbers that are explicitly
entered, with substitution texts that are also explicitly entered (i.e. not for search results from tag
filters and not substituting with stored data e.g. from address book contact entries).

The POST version of the /send endpoint uses the tosubst field to specify the substitutions to be used
for each number. The field is a json list of objects, where each object has a to field and a subst field.
The to field is a string with the recipient number, and the subst field is a json object, with the form
of what is called a dictionary, library, or map of string to string in different programming
languages, where the place holders are keys and the texts to substitute are the corresponding
values.

"tosubst":[
 {
 "to":"46701234567",
 "subst": { "CUSTOMER":"Anna", "ITEMNO":"1234567", "CITY":"Stockholm" }
 },
 { "to":"46709876543",
 "subst": { "CUSTOMER":"Sven", "ITEMNO":"1234568", "CITY":"Västra Frölunda" }
 }
]

The GET version of the /send endpoint uses the TS and H parameters for the same purpose as the
tosubst field in the POST version. The H parameter is a list of k place holders, and the TS parameter
has k+1 comma separated (url encoded utf-8) strings per recipient, where the first is the recipient
number and the next k are the substitutions.

TS=46701234567,Anna,1234567,Stockholm,46709876543,Sven,1234568,V%C3%A4stra+Fr%C3%B6lun
da&H=CUSTOMER,ITEMNO,CITY

10

In the /send/single endpoint, where all efforts are aimed at a simple, flat input object, the phone
number is given in the same to field as non-substituted messages, and the holderX and substX fields
are used to specify place holder substitutions. This endpoint sends to one recipient per call.

"to": "46701234567",
"holder1": "CUSTOMER",
"subst1": "Anna",
"holder2": "ITEMNO",
"subst2": "1234567",
"holder3": "CITY",
"subst3": "Stockholm"

In the newest version of the web portal, the feature for editing and saving text templates is
improved to allow a use case where logged-in users send single SMS messages by manually adding
individual data for slots in the template message into input boxes on the SMS sending web page,
allowing a coherent messaging strategy between different recipients. When editing such a template
in the web portal, convenient buttons add place holders of the form {Text:customer} or
{Text:ITEMNO} or {Text:City:Location of the store} or {DateTime:today}. In this API, there is a
short-cut to substitute such template derived place holders in in the same way as place holders
without curly brackets, taking care to keep the upper-case and lower-case exactly as in the
template. Any curly bracket substitutions not given a value are replaced with the empty string in
the output message. Substitutions not found in the template are ignored. Note that the editing page
can also add place holders for data pertaining to the logged-in user or the address book contact of
the recipient, and these types are not supported currently in this API.

"tosubst":[
 {
 "to":"46701234567",
 "subst": { "customer":"Anna", "ITEMNO":"1234567", "City":"Stockholm", "today":"Jan
1 2022" }
 },
 { "to":"46709876543",
 "subst": { "customer":"Sven", "ITEMNO":"1234568", "City":"Västra Frölunda" }
 }
],
"templateid":"123456789123456"

If any labels used inside the curly bracket place holders happen to coincide exactly with words in
the message, there is a parameter onlytemplateplaceholders / TPONLY that can be used to not
substitute the single words but only the place holders from the saved template.

Hello {Text:customer}! You are our best customer.

Will become "Hello Anna! You are our best Anna." with onlytemplateplaceholders=false, and "Hello
Anna! You are our best customer." with with onlytemplateplaceholders=true

11

Chapter 2. The /send/single endpoint
Used for sending a single SMS

2.1. POST request example
probably from an application

https://secure.lekab.com/restsms/api/send/single

With the contents of the HTTP body:

 {"username":"testuser","password":"testpass","from":"LEKAB",
 "to":"46701234567",
 "message":"Hallå där!","twoway":true,"conversation":"CONV123"}

2.1.1. Explanation of parameters for /send/single

The /send/single endpoint accepts a single string field as the "to" parameter, and does not accept
any parameters that may lead to sending messages to more than one recipient (groups, tag filters
etc.)

The json body of the request can contain maximum 10000 UTF-8 encoded characters.

POST json key json value (strings quoted)

username string username of the API account in
the service

password string password of the API account in
the service

apikey string API key of the API account in the
service

to string recipient phone number

from string sender id of the SMS (ignored for
two-way SMS)

message string UTF-8 Message to send

templateid string containing long integer id of saved template (edited in
web portal). See explanation of
saved templates and substitution
for /send

twoway boolean (default false) use sender id from reply number
pool

12

POST json key json value (strings quoted)

conversation string conversation id not sent but
echoed with two-way reply

costcenter string grouping in billing

flash boolean (default false) send flash SMS. When sending a
flash SMS make sure the SMS
contains only characters from the
GSM 03.38 character set and
contains 160 characters or less.

validminutes string containing integer validity time of SMS (default is
1440 i.e. 24h)

defaultcountrycode string containing digits replaces leading zero in to
number starting with single zero

replacecharacters boolean (default false) Replace certain characters not in
the GSM-7 standard character set
with similar characters in that set
(e.g. non-breaking space u00A0
replaced by ordinary space
u0020). Only applied if enabled
for the account; please contact
customer service for details.

scheduletime string containing time Schedule sendout for sending in
the future. ISO 8601 standard
format like "2022-02-
14T15:00:00Z" or "2022-02-
14T15:00Z" or "2022-02-
14T17:00:00+02:00 or "2022-02-
14T13:00-02:00"

checknumber boolean (default false) Check using Google library if
recipient number format is in an
official mobile number series for
the country in question and reject
if not a possible mobile number.
Will reject too long numbers used
for cheaper incoming SMS, but
those are rarely recipients.

holderX string UTF-8 placeholder string which will be
replaced by the substX string (X is
digit 1-5). Placeholder abc also
replaces saved template derived
{Text:abc} and {DateTime:abc}
placeholders. See explanation of
saved templates and substitution
for /send

13

POST json key json value (strings quoted)

substX string UTF-8 text string which will replace the
holderX string or its saved
template derived variants (X is
digit 1-5). See explanation of
saved templates and substitution
for /send

onlytemplateplacehold
ers

boolean (default false) Only replace template derived
place holders of the form
{Text:abc} and {DateTime:def},
not the words abc or def
themselves. See explanation of
saved templates and substitution
for /send

2.1.2. HTTP response to /send/single

A successful request will return 200 OK and a json document of the following format. A failure to
attempt sending due e.g. to an invalid recipient phone number will return an appropriate error
code, e.g. 400 Invalid request. A successfully sent message may sometimes not be delivered due to
external factors (phone turned off, phone subscription expired, no such subscriber), but such
requests will be reported as successful by this endpoint, and the later fortune of the message can be
followed via the /status or /status/single endpoints. A scheduled message is reported as accepted,
and will have status SCHEDULED until the scheduled send time. The Content-Type header of the
response is application/json for all responses.

{
 "to" : "46701234567",
 "id" : "354284289",
 "parts" : "1"
}

2.1.3. Explanation of response to /send/single

POST json key json value (strings
quoted)

to string recipient phone number

id string id of the SMS (use this for future references to this SMS,
e.g. for status queries)

parts string number of SMS parts (decimal digits only) sent, since
SMS messages are sent in parts, each with a max length
depending on character set

14

Chapter 3. The /status endpoint
Used to retrieve the status of SMS that were sent earlier.

Reading statuses will by default mark them as read, unless the markasread parameter is explicitly
set to false. When the status of a message changes, the status is set to unread by the system

This endpoint can either retrieve unread statuses of SMS messages sent, or retrieve the statuses for
a list of given SMS message ids (independent on whether they were read before or not).

Reading the status of a message will by default mark the status as read, but this can be avoided by
setting the markasread R parameter to FALSE. This default value is TRUE both when reading unread
statuses and when reading listed statuses. If markasread is set to FALSE, the same statuses will be
retrieved again on the next call.

3.1. GET request example
e.g. from web browser or curl

curl
https://secure.lekab.com/restsms/api/status?U=testuser&P=testpass&R=FALSE&I=1088,4140,
4118,4243,4412

3.2. POST request example
Probably from an application

https://secure.lekab.com/restsms/api/status

with the contents of the HTTP body:

{
 "username" : "testuser",
 "password" : "testpass",
 "markasread" : false,
 "id" : ["1088", "4140", "4118", "4243", "4412"]
}

3.2.1. Explanation of parameters for /status

15

POST json
key

GET
query
param

json value
(strings
quoted)

query param value
(strings without
quotes)

username U string string username of the API account in
the service

password P string string password of the API account in
the service

apikey key string string API key of the API account in the
service

id I json list of
string

comma separated
strings

list of ids of the SMS for which
send status is to be retrieved

maxnum N integer
(default 100)

integer max number of statuses to
retrieve (ignored if ids are listed)

markasread R boolean
(default true)

F, FALSE, N or NO flag whether the status should be
marked as read (defaults to true)

A POST call with default parameters, where the authorization credentials are supplied via Basic
Authentication or X-Lekab-headers can supply either a zero-length body or an empty JSON
document with the same result.

3.2.2. HTTP response to /status

A successful request will return 200 OK and a json document of the following format. The Content-
Type header of the response is application/json for all responses.

{
 "statuses" : [{
 "to" : "46700123456",
 "from" : "46737494333249",
 "id" : "1088",
 "status" : "DELIVERED",
 "statuscode" : "2",
 "conversation" : "",
 "time" : "1467132305000"
 }, {
 "to" : "46705123456",
 "from" : "Lekab",
 "id" : "4243",
 "status" : "QUEUED",
 "statuscode" : "0",
 "conversation" : "",
 "time" : "1476454236000"
 }, {
 "to" : "46702345678",
 "from" : "46737494333295",
 "id" : "4412",

16

 "status" : "UNDELIVERABLE",
 "statuscode" : "6",
 "conversation" : "74867653486858240",
 "time" : "1477311457000"
 }],
 "notfound" : ["4140", "4118"]
}

Note that in this example, three of the listed statuses were found, while two were not. If the user is
not allowed to read a status for a certain id, because that message belongs to another user, this is
treated as not found.

3.2.3. Explanation of response to /status

POST json key json value (strings
quoted)

statuses json list of json
documents

list of send statuses retrieved

notfound json list of string list of message ids for which no status could be
retrieved

to string recipient phone number

from string sender id (number or alphanumeric)

id string id of the SMS

status string name of the status state of the message (DELIVERED is
good)

statuscode string containing integer
0 to 15

integer code of the status state of the message

conversation string conversation id given when sending the message

time string containing long
integer

timestamp in milliseconds after the epoch (1970-01-01
00:00:00 Z)

3.2.4. Message status codes

The following message status codes can be received in the message status.

stat
usc
ode

status Description

0 QUEUED Queued for delivery

1 SENT Sent to operator

2 DELIVERED Delivered to the mobile station

3 DELETED The message was deleted

17

stat
usc
ode

status Description

4 EXPIRED The message has expired

5 REJECTED The message was rejected by the operator

6 UNDELIVERABLE The message could not be delivered

7 ACCEPTED The message was accepted by the operator

8 ABSENTSUBSCRIBER The subscribers mobile station is switched off

9 UNKNOWNSUBSCRIBER The subscriber is not known

10 INVALIDDESTINATION The destination address is invalid

11 SUBSCRIBERERROR The mobile station can not receive the message

12 UNKNOWN The status of the message is unknown

13 ERROR Internal error when sending the message

14 SCHEDULED Not yet sent but scheduled for sending

15 CANCELED Scheduled message was canceled before sending

3.2.5. Non-final statuses

A later status update from the mobile carrier is quite likely to change the value.

QUEUED (0), SENT (1), SCHEDULED (14)

When the status is updated, the read flag is cleared to unread status, and the new status will be
retrieved the next time reading. Note that when the recipient’s phone is turned off, this is where the
status is stuck until the phone is turned on or the message expires.

3.2.6. Successful final status

The recipient’s phone has supposedly acknowledged receipt of this message.

DELIVERED (2)

3.2.7. Failing final statuses

The recipient will not get this message.

DELETED (3), EXPIRED (4), REJECTED (5), UNDELIVERABLE (6), ABSENTSUBSCRIBER (8), UNKNOWNSUBSCRIBER
(9), INVALIDDESTINATION (10), SUBSCRIBERERROR (11), ERROR (13), CANCELED (15)

3.2.8. Unclear

Probably failing final statuses (probably the mobile carrier has lost or dumped the message, but it
may suddenly turn up).

ACCEPTED (7), UNKNOWN (12)

18

3.2.9. Example Python 3 code

import json
import requests

statuses = {"username" : "testuser", "password": "testpass", "markasread" : False,
"id" : ["6202", "6203", "6204"]}
statuses_json = json.dumps(statuses)
url = 'https://secure.lekab.com/restsms/api/status'
response = requests.post(url, data=statuses_json)
statusresp = response.json()
for s in statusresp["statuses"]:
 print("id=" + s["id"] + ", status=" + s["status"])

will output

id=6202, status=DELIVERED
id=6203, status=UNDELIVERABLE
id=6204, status=QUEUED

19

Chapter 4. The /status/single endpoint
Used to retrieve the status of one (1) SMS that was sent earlier.

Reading a status will by default mark it as read, unless the markasread parameter is explicitly set to
false. When the status of a message changes, the status is set to unread by the system.

This endpoint can either retrieve an unread status of a sent SMS message, or retrieve the status for
a given SMS message id (independent on whether it was read before or not).

Reading the status of a message will by default mark the status as read, but this can be avoided by
setting the markasread parameter to false. This default value is true both when reading unread
statuses and when reading status by id. If markasread is set to false, the same status will, in most
cases, be retrieved again on the next call (unless the status changed in the mean time).

4.1. POST request example
Probably from an application

https://secure.lekab.com/restsms/api/status/single

with the contents of the HTTP body:

{
 "username" : "testuser",
 "password" : "testpass",
 "markasread" : false,
 "id" : "1088"
}

4.1.1. Explanation of parameters for /status/single

The /status/single endpoint accepts a single string field as the "id" parameter, and if no id is given
a maximum of one (1) unread status change is returned.

POST json key json value (strings quoted)

username string username of the API account in
the service

password string password of the API account in
the service

apikey string API key of the API account in the
service

id string id of the SMS for which send
status is to be retrieved

20

POST json key json value (strings quoted)

markasread boolean (default true) flag whether the status should be
marked as read (defaults to true)

A POST call with default parameters, where the authorization credentials are supplied via Basic
Authentication or X-Lekab-headers can supply either a zero-length body or an empty JSON
document with the same result.

4.1.2. HTTP response to /status/single

A successful request will return 200 OK and a json document of the following format. The Content-
Type header of the response is application/json for all responses.

{
 "to" : "46700123456",
 "from" : "46737494333249",
 "id" : "1088",
 "status" : "DELIVERED",
 "statuscode" : "2",
 "conversation" : "",
 "time" : "1467132305000"
}

If the id given does not correspond to a sent SMS that the requesting user is allowed to see, or if no
id is given and no unread status change is available, a 404 Not found error will be returned.

4.1.3. Explanation of response to /status/single

POST json key json value (strings
quoted)

to string recipient phone number

from string sender id (number or alphanumeric)

id string id of the SMS

status string name of the status state of the message (DELIVERED is
good)

statuscode string containing integer
0 to 15

integer code of the status state of the message

conversation string conversation id given when sending the message

time string containing long
integer

timestamp in milliseconds after the epoch (1970-01-01
00:00:00 Z)

The status values are described above, in the explanations of the /status endpoint.

21

Chapter 5. The /incoming endpoint
Used to retrieve incoming SMS that were either sent to a short or long number rented by the user,
or to a number pool number in response to a two-way SMS.

Reading incoming SMS will by default mark them as read, unless the markasread parameter is
explicitly set to false

This endpoint can either retrieve unread incoming SMS messages, or retrieve incoming SMS
messages whose message ids are given (independent of whether they were read before or not).

Reading a message will by default mark the message as read, but this can be avoided by setting the
markasread R parameter to FALSE. This default value is TRUE both when reading unread messages
and when reading id listed messages. If markasread is set to FALSE, the same messages will be
retrieved again on the next call.

5.1. GET request example
e.g. from web browser or curl

curl
https://secure.lekab.com/restsms/api/incoming?U=testuser&P=testpass&R=FALSE&N=10&G=Y

5.2. POST request example
Probably from an application

https://secure.lekab.com/restsms/api/incoming

With the contents of the HTTP body:

{
 "username" : "testuser",
 "password" : "testpass",
 "markasread" : false,
 "maxnum" : 10,
 "getoriginal" : true
}

5.2.1. Explanation of parameters for /incoming

22

POST json
key

GET
query
param

json value
(strings
quoted)

query param value
(strings without
quotes)

username U string string username of the API account in
the service

password P string string password of the API account in
the service

apikey key string string API key of the API account in the
service

id I json list of
string

comma separated
strings

list of ids of the SMS for which
send status is to be retrieved

maxnum N integer
(default 100)

integer max number of incoming
messages to retrieve (ignored if
ids are listed)

markasread R boolean
(default true)

F, FALSE, N or NO flag whether the incoming
message should be marked as
read (defaults to true)

getoriginal G boolean
(default false)

T, TRUE, Y or YES should original SMS text in a two-
way conversation be retrieved?

latest L boolean
(default false)

T, TRUE, Y or YES reverse order so that the
maxnum latest messages not
marked as read are returned
(default is the maxnum earliest
non-marked)

A POST call with default parameters, where the authorization credentials are supplied via Basic
Authentication or X-Lekab-headers can supply either a zero-length body or an empty JSON
document with the same result.

5.2.2. HTTP response to /incoming

A successful request will return 200 OK and a json document of the following format. The Content-
Type header of the response is application/json for all responses.

{
 "incoming" : [{
 "from" : "46701234567",
 "to" : "54321",
 "id" : "1077",
 "message" : "Please send more info about the club",
 "conversation" : "",
 "resptoid" : "",
 "origmess" : "",
 "time" : "1478538376000"
 }, {

23

 "from" : "46711223344",
 "to" : "46737494333766",
 "id" : "323",
 "message" : "Yes I would love to",
 "conversation" : "67259314888265728",
 "resptoid" : "3403",
 "origmess" : "Will you join us at the pub after?",
 "time" : "1475497511000"
 }],
 "notfound" : []
}

Note that in this example where no ids are requested, the list of not found ids will always be empty.

5.2.3. Explanation of response to /incoming

POST json key json value (strings quoted)

incoming json list of json documents list of incoming sms messages retrieved

notfound json list of string list of message ids for which no incoming
message could be retrieved

from string sender phone number

to string recipient number (long number or short code)

id string id of the incoming SMS

message string the incoming message text

conversation string conversation id associated with this message
(two-way SMS response)

resptoid string id of original SMS associated with this message
(two-way SMS response)

origmess string original SMS text associated with this message
(two-way SMS response, retrieved if requested)

time string containing long
integer

timestamp in milliseconds after the epoch (1970-
01-01 00:00:00 Z)

5.2.4. Example Python 3 code

Example code for /incoming will be very similar to that for /status above

24

Chapter 6. The /incoming/single endpoint
Used to retrieve one (1) incoming SMS that was either sent to a short or long number rented by the
user, or to a number pool number in response to a two-way SMS.

Reading incoming SMS will by default mark them as read, unless the markasread parameter is
explicitly set to false

This endpoint can either retrieve the next unread incoming SMS message, or retrieve an incoming
SMS whose id is given (independent on whether it was read before or not).

Reading the a message will by default mark the message as read, but this can be avoided by setting
the markasread parameter to false. This default value is true both when reading unread messages
and when reading id listed messages. If markasread is set to false, the same message will in most
cases be retrieved again on the next call.

6.1. POST request example
Probably from an application

https://secure.lekab.com/restsms/api/incoming/single

With the contents of the HTTP body:

{
 "username" : "testuser",
 "password" : "testpass",
 "markasread" : false,
 "getoriginal" : true
}

6.1.1. Explanation of parameters for /incoming/single

The /incoming/single endpoint accepts a single string field as the "id" parameter, and if no id is
given a maximum of one (1) unread incoming SMS is returned.

POST json key json value (strings quoted)

username string username of the API account in
the service

password string password of the API account in
the service

apikey string API key of the API account in the
service

25

POST json key json value (strings quoted)

id string id of the SMS for which send
status is to be retrieved

markasread boolean (default true) flag whether the incoming
message should be marked as
read (defaults to true)

getoriginal boolean (default false) should original SMS text in a two-
way conversation be retrieved?

latest boolean (default false) reverse order so that the latest
message not marked as read is
returned (default is the earliest
non-marked)

A POST call with default parameters, where the authorization credentials are supplied via Basic
Authentication or X-Lekab-headers can supply either a zero-length body or an empty JSON
document with the same result.

6.1.2. HTTP response to /incoming/single

A successful request (at least incoming SMS was retrieved) will return 200 OK and a json document
of the following format. The Content-Type header of the response is application/json for all
responses.

{
 "from" : "46701234567",
 "to" : "54321",
 "id" : "1077",
 "message" : "Please send more info about the club",
 "conversation" : "",
 "resptoid" : "",
 "origmess" : "",
 "time" : "1478538376000"
}

If the id given does not correspond to an incoming SMS that the requesting user is allowed to see, or
if no id is given and no unread incoming SMS is available, a 404 Not found error will be returned.

6.1.3. Explanation of response to /incoming/single

POST json key json value (strings quoted)

from string sender phone number

to string recipient number (long number or short code)

id string id of the incoming SMS

message string the incoming message text

26

POST json key json value (strings quoted)

conversation string conversation id associated with this message
(two-way SMS response)

resptoid string id of original SMS associated with this message
(two-way SMS response)

origmess string original SMS text associated with this message
(two-way SMS response, retrieved only if
requested)

time string containing long
integer

timestamp in milliseconds after the epoch (1970-
01-01 00:00:00 Z)

27

	SMS API REST Web Service
	SMS API REST Web Service
	Introduction
	Different authentication methods available for requests
	Supported character sets in the resulting SMS and pricing issues

	Chapter 1. The /send endpoint
	1.1. GET request example
	1.2. POST request example
	1.2.1. Explanation of parameters for /send
	1.2.2. HTTP response to /send
	1.2.3. Explanation of response to /send
	1.2.4. Example Python 3 code
	1.2.5. Tag filter usage
	1.2.6. Use of saved text templates and substitution of place holders

	Chapter 2. The /send/single endpoint
	2.1. POST request example
	2.1.1. Explanation of parameters for /send/single
	2.1.2. HTTP response to /send/single
	2.1.3. Explanation of response to /send/single

	Chapter 3. The /status endpoint
	3.1. GET request example
	3.2. POST request example
	3.2.1. Explanation of parameters for /status
	3.2.2. HTTP response to /status
	3.2.3. Explanation of response to /status
	3.2.4. Message status codes
	3.2.5. Non-final statuses
	3.2.6. Successful final status
	3.2.7. Failing final statuses
	3.2.8. Unclear
	3.2.9. Example Python 3 code

	Chapter 4. The /status/single endpoint
	4.1. POST request example
	4.1.1. Explanation of parameters for /status/single
	4.1.2. HTTP response to /status/single
	4.1.3. Explanation of response to /status/single

	Chapter 5. The /incoming endpoint
	5.1. GET request example
	5.2. POST request example
	5.2.1. Explanation of parameters for /incoming
	5.2.2. HTTP response to /incoming
	5.2.3. Explanation of response to /incoming
	5.2.4. Example Python 3 code

	Chapter 6. The /incoming/single endpoint
	6.1. POST request example
	6.1.1. Explanation of parameters for /incoming/single
	6.1.2. HTTP response to /incoming/single
	6.1.3. Explanation of response to /incoming/single

